
System Composer™
User's Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ User's Guide
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)
March 2022 Online only Revised for Version 2.2 (Release 2022a)
September 2022 Online only Revised for Version 2.3 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Architecture Model Editing
1

Compose Architectures Visually . 1-2
Create Architecture Model . 1-2
Components . 1-5
Ports . 1-9
Connections . 1-12

Decompose and Reuse Components . 1-17
Decompose Component . 1-17
Create Reference Architecture . 1-18
Use Reference Architecture . 1-20
Remove Reference Architecture . 1-20
Create Variants . 1-21
Add Variant Choices . 1-22
Create Software Architecture from Component . 1-23

Build Architecture Models Programmatically . 1-24

Modeling System Architecture of Small UAV . 1-32

Model-Based Systems Engineering for Space-Based Applications 1-38

Use Property Inspector in System Composer . 1-55
Property Inspector Modes . 1-55

Requirements
2

Link and Trace Requirements . 2-2

Manage Requirements . 2-8
Mobile Robot Architecture Model . 2-8
Manage Requirements . 2-8
Trace Requirements . 2-9
Use Requirements Traceability Diagram . 2-10
Link Requirements . 2-11
Verify and Validate Requirements Using Test Harnesses 2-13

Update Reference Requirement Links from Imported File 2-15

iii

Contents

Interface Management
3

Define Port Interfaces Between Components . 3-2

Create Interfaces . 3-4
Mobile Robot Architecture Model . 3-4
Open Interface Editor . 3-4
Create Composite Data Interfaces . 3-5
Create Value Types as Interfaces . 3-6
Nest Interfaces to Reuse Data . 3-7

Assign Interfaces to Ports . 3-9
Mobile Robot Architecture Model with Interfaces 3-9
Associate Ports with Interfaces in Property Inspector 3-9
Assign Interfaces to Ports Using the Context Menu 3-10
Define Owned Interfaces Local to Ports . 3-10
Select Multiple Ports and Assign Data Interface 3-12
Specify Source Element or Destination Element for Ports 3-13
Enable Interface Compatibility Edit-Time Check 3-14

Interface Adapter . 3-16

Manage Interfaces with Data Dictionaries . 3-21
Mobile Robot Architecture Model with Interfaces 3-21
Save, Link, and Delete Interfaces . 3-21

Reference Data Dictionaries . 3-23
Add Referenced Data Dictionaries . 3-23
Use Referenced Data Dictionaries for Projects with Multiple Models 3-24

Define Parameters
4

Author Parameters in System Composer Using Parameter Editor 4-2

Use Parameters to Store Instance Values with Components 4-6

Define Architectural Properties
5

Define Profiles and Stereotypes . 5-2
Create a Profile and Add Stereotypes . 5-2
Add Properties with Stereotypes . 5-3
Define Default Stereotypes . 5-5
Use Stereotype-Based Styling . 5-6

iv Contents

Use Stereotypes and Profiles . 5-9
Import Profiles . 5-9
Apply Stereotypes . 5-10
Remove Stereotypes . 5-17
Extend Stereotypes . 5-17

Simulate Mobile Robot with System Composer Workflow 5-20

Organize and Link Requirements . 5-22
Link Stakeholder Requirements to System Requirements 5-22

Design Architecture Models . 5-25
Design, Specify, and Allocate Architecture Models 5-25

Define Stereotypes and Perform Analysis . 5-32
Define Stereotypes and Perform Analysis . 5-32

Simulate Architectural Behavior . 5-41
Simulate Architectural Behavior . 5-41

Describe System Behavior with Diagrams
6

Describe System Behavior Using Sequence Diagrams 6-2

Author Sequence Diagram for Traffic Light Example 6-4
Traffic Light Example . 6-5
Add Lifelines and Messages . 6-6
Add Fragments and Operands . 6-10

Use Sequence Diagrams with Architecture Models 6-16
Traffic Light Example with Hierarchy for Sequence Diagrams 6-16
Create Sequence Diagram . 6-17
Add Child Lifelines to Sequence Diagram . 6-18
Create Sequence Diagram Gates . 6-20
Co-Create Components . 6-21
Synchronize Sequence Diagram and Model . 6-22
Create Messages in Sequence Diagram . 6-22
Modify Sequence Diagram Using Model Browser 6-25
Use Annotations to Describe Elements of Sequence Diagram 6-26
Create Sequence Diagram from View . 6-27

Author Sequence Diagram Fragments . 6-29
Sequence Diagram Fragments . 6-29
Fragment Semantics . 6-30
Messages with Ambiguous Order . 6-38

Synchronize Sequence Diagrams and Architecture Models 6-40

Simulate Sequence Diagrams for Traffic Light Example 6-44

v

Use Simulink Models with System Composer
7

Implement Component Behavior Using Simulink . 7-2
Create Simulink Behavior with Robot Arm Model 7-2
Create Referenced Simulink Behavior Model . 7-4
Create Simulink Subsystem Behavior Using Subsystem Component 7-6
Link to Existing Simulink Behavior Model . 7-9
Access Model Arguments as Parameters on Reference Components 7-9
Create Simulink Behavior from Template for Component 7-10

Extract Architecture of Simulink Model Using System Composer 7-12

Implement Component Behavior Using Stateflow Charts 7-14
Add State Chart Behavior to Component . 7-14
Remove Stateflow Chart Behavior from Component 7-17

Extract Architecture from Simulink Model . 7-19

Implement Component Behavior Using Simscape 7-23
Architecture Model with Simscape Behavior for a DC Motor 7-23
Define Physical Ports on Component . 7-24
Specify Physical Interfaces on Ports . 7-24
Create Simulink Subsystem Component . 7-25
Describe Component Behavior Using Simscape 7-26

Merge Message Lines for Architectures Using Adapter Block 7-29

Allocate Architecture Models
8

Create and Manage Allocations Interactively . 8-2
Create and Manage Allocations Interactively Using Tire Pressure

Monitoring System . 8-2

Create and Manage Allocations Programmatically 8-8
Create and Manage Allocations Using Tire Pressure Monitoring System

. 8-8

Allocate Architectures in Tire Pressure Monitoring System 8-10

Systems Engineering Approach for SoC Applications 8-15

Analyze Architecture Model
9

Analyze Architecture . 9-2
Set Properties for Analysis . 9-2

vi Contents

Create a Model Instance for Analysis . 9-4
Write Analysis Function . 9-6
Run Analysis Function . 9-7

Analysis Function Constructs . 9-9
Roll-Up Analysis for Quadcopter Design . 9-9
Class-Based Analysis for Battery Sizing . 9-10
Allocation-Based Analysis for Tire Pressure Monitoring 9-11
Remaining Useful Life Analysis for Mobile Robot Design 9-11
Variant Analysis for Insulin Infusion Pump Design 9-12

Battery Sizing and Automotive Electrical System Analysis 9-14

Calculate Endurance Using Quadcopter Architectural Design 9-16

Design Insulin Infusion Pump Using Model-Based Systems Engineering
. 9-23

Software Architectures
10

Author Software Architectures . 10-2
Create New Software Architecture Model . 10-2
Build a Simple Software Architecture Model . 10-4
Import and Export Software Architectures . 10-5
Create Software Architecture from Architecture Model Component 10-5

Simulate and Deploy Software Architectures . 10-8

Modeling Software Architecture of Throttle Position Control System
. 10-14

Class Diagram View of Software Architectures . 10-20
Software Architecture with Class Diagram View 10-20
Interact with Class Diagram View . 10-20
Client-Server Interfaces in Class Diagram View 10-21

Author and Extend Functions for Software Architectures 10-24
Author and Visualize Functions Using Functions Editor 10-24
Author Functions Programmatically . 10-28
Implement Behaviors for Functions in the Architecture Level 10-29
Apply Stereotypes to Functions of Software Architectures 10-29
Import and Export Functions of Software Architectures 10-30

Merge Message Lines Using Adapter Block . 10-32

Authoring Functions for Software Components of an Adaptive Cruise
Control . 10-34

Author Service Interfaces for Client-Server Communication 10-41
Synchronous Client-Server Simulink Behavior 10-42
Asynchronous Client-Server Simulink Behavior 10-43

vii

Service-Oriented Sensor Modeling . 10-45

Simulate Asynchronous Services for Vehicle Headlight Management
. 10-53

Create Custom Views
11

Create Spotlight Views . 11-2
Mobile Robot Architecture Model with Properties 11-2
Create Spotlight Views from Components . 11-2

Create Architecture Views Interactively . 11-5
Create Filtered Views with Component Filters and Port Filters 11-5
Add Group By Criteria to Filtered Views . 11-9
Edit Views Interactively . 11-10
Add or Remove Requirements Links from Views 11-11
Add Custom Clauses to Component Filters and Port Filters 11-13

Create Architectural Views Programmatically . 11-15
Create Architecture Views in System Composer with Keyless Entry System

. 11-15
Find Elements in Model Using Queries . 11-17

Display Component Hierarchy and Architecture Hierarchy Using Views
. 11-21

Robot Computer Systems Architecture . 11-21
Switch Between Component Diagram View and Hierarchy Views 11-22

Modeling System Architecture of Keyless Entry System 11-25

Manage Architecture Models
12

Organize System Composer Files in Projects . 12-2
Use Projects to Organize Files and Folders . 12-2

Compare Model Differences Using System Composer Comparison Tool
. 12-4

Import and Export Architecture Models
13

Import and Export Architectures . 13-2

viii Contents

Import and Export Architecture Models . 13-5
Define Basic Architecture . 13-5
Import Basic Architecture . 13-6
Extend Basic Architecture Import . 13-7
Export Architecture . 13-11

Import System Composer Architecture Using ModelBuilder 13-13

System Composer Report Generation for System Architectures 13-19

ix

Architecture Model Editing

• “Compose Architectures Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-17
• “Build Architecture Models Programmatically” on page 1-24
• “Modeling System Architecture of Small UAV” on page 1-32
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38
• “Use Property Inspector in System Composer” on page 1-55

1

Compose Architectures Visually

In this section...
“Create Architecture Model” on page 1-2
“Components” on page 1-5
“Ports” on page 1-9
“Connections” on page 1-12

You can create and edit visual diagrams to represent architectures in System Composer™. Use
architectural elements including components, ports, and connections in the system composition.
Model hierarchy in architecture by decomposing components. Navigate through the hierarchy.

With MATLAB® code and the functions importModel and exportModel, you can import external
architecture descriptions into System Composer. For more information, see “Import and Export
Architecture Models” on page 13-5.

Alternatively, you can use MATLAB programming to create and customize the various architectural
elements. For details, see “Build Architecture Models Programmatically” on page 1-24.

Create Architecture Model
A System Composer architecture represents a system of components and how they interface with
each other structurally and behaviorally. You can represent specific architectures using alternate
views.

Different types of architectures describe different aspects of systems:

• Functional architecture describes the flow of data in a system.
• Logical architecture describes the intended operation of a system.
• Physical architecture describes the platform or hardware in a system.

You can define parameters on the architecture level using the Parameter Editor.

A System Composer model is the file that contains architectural information, including components,
ports, connectors, interfaces, and behaviors.

An architecture model includes a top-level architecture that holds the composition of the system. This
top-level architecture also allows definition of interfaces of this system with other systems.

Start with a blank architecture model to model the physical and logical architecture of a system. Use
one of these three methods to create an architecture model:

• At the MATLAB Command Window, enter:

systemcomposer

Select Architecture Model.

1 Architecture Model Editing

1-2

Use a System Composer Architecture Model to describe systems as a combination of structural
elements with underlying behavioral descriptions. Use a Software Architecture Model to easily
define the execution order of your functions from your components, simulate your design in the
architecture level, and generate code by linking your Simulink® export-function, rate-based, or
JMAAB models to components.

For more information about software architecture models, see “Author Software Architectures” on
page 10-2.

• From a Simulink model or a System Composer architecture model. On the Simulation tab, select

New , and then select Architecture .

 Compose Architectures Visually

1-3

• At the MATLAB Command Window, enter:

archModel = systemcomposer.createModel("ModelName");
systemcomposer.openModel(archModel);

where ModelName is the name of the new model.

Save the architecture model. On the Simulation tab, select Save . The architecture model is
saved as an SLX file.

The architecture model includes a top-level architecture that holds the composition of the system.
This top-level architecture also allows definition of interfaces of this system with other systems. The
composition represents a structured parts list — a hierarchy of components with their interfaces and
interconnections. Edit the composition in the Composition Editor.

1 Architecture Model Editing

1-4

This example shows a motion control architecture, where a sensor obtains information from a motor,
feeds that information to a controller, which in turn processes this information to send a control
signal to the motor so that it moves in a certain way. You can start with this rough description and
add component properties, interface definitions, and requirements as the design progresses.

Components
A component is a nontrivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. A component defines an architectural element, such as a
function, a system, hardware, software, or other conceptual entity. A component can also be a
subsystem or subfunction.

The Component element in System Composer can represent a component at any level of the system
hierarchy, whether it is a major system component that encompasses many subsystems, such as a
controller with its hardware and software, or a component at the lowest level of hierarchy, such as a
software module for messaging.

Represented as a block, a component is a part of an architecture model that can be separated into
reusable artifacts. Transfer information between components with:

• Port interfaces using the Interface Editor
• Parameters using the Parameter Editor

Add Components

Use one of these methods to add components to the architecture:

 Compose Architectures Visually

1-5

• Draw a component — In the canvas, left-click and drag the mouse to create a rectangle. Release
the mouse button to see the component outline. Select the Component block option to commit.

• Create a single component from the palette —

• Create multiple components from the palette —

1 Architecture Model Editing

1-6

Name Component

Each component must have a name that is unique within the same architecture level. The name of the
component is highlighted upon creation so you can directly type the name. To change the name of a
component, click the component and then click its name.

 Compose Architectures Visually

1-7

Move Component

Move a component simply by clicking and dragging it. Blue guidelines may appear to help align the
component with other components.

Resize Component

Resize a component by dragging corners.

1 Pause the pointer over a corner to see the double arrow.

2 Click the corner and drag while holding the mouse button down. If you want to resize the
component proportionally, hold the Shift button as well.

1 Architecture Model Editing

1-8

3 Release the mouse button when the component reaches the size you want.

Delete Component

Click a component and press Delete to delete it. To delete multiple components, select them while
holding the Shift key down, then press Delete.

Ports
A port is a node on a component or architecture that represents a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.

There are different types of ports:

• Component ports are interaction points on the component to other components.
• Architecture ports are ports on the boundary of the system, whether the boundary is within a

component or the overall architecture model.

For example, a sensor might have data ports to communicate with a motor and a controller. Its input
port takes data from the motor, and the output port delivers data to the controller. You can specify
data properties by defining an interface as described in “Define Port Interfaces Between
Components” on page 3-2.

Add Component Port

Represent the relationship between components by defining directional interface ports. You can
organize the diagram by positioning ports on any edge of the component, in any position.

1 Pause over the side of a component. A + sign and a port outline appear.

2 Click the port outline. A set of options appear for an Input, Output, or Physical port.

 Compose Architectures Visually

1-9

3 Select Output to commit the port. You can also name the port at this point.

An output port is shown with the icon, an input port is shown with the icon, and a physical
port is shown with the icon and is nondirectional.

You can move any port to any component edge after creation.

Add Architecture Port

You can also create a port for the architecture that contains components. These system ports carry
the interface of the system with other systems. Pause on any edge of the system box and click when
the + sign appears. Click the left side to create input ports and click the right side to create output
ports.

1 Architecture Model Editing

1-10

Name Port

Every port is created with a name. To change the name, click it and edit.

Ports of a component must have unique names.

Move Port

You can move a port to any side of a component. Select the port and use arrow keys.

Arrow Key Original Port Edge Port Movement
Up Left or right If below other ports on the same

edge, move up, if not, move to
the top edge

Top or bottom No action

 Compose Architectures Visually

1-11

Arrow Key Original Port Edge Port Movement
Right Top or bottom If to the left of other ports on

the same edge, move right, if
not, move to the right edge

Left or right No action
Down Left or right If above other ports on the same

edge, move down, if not, move
to the bottom edge

Top or bottom No action
Left Top or bottom If to the right of other ports on

the same edge, move left, if not,
move to the left edge

Left or right No action

The spacing of the ports on one side is automatic. There can be a combination of input and output
ports on the same edge.

Delete Port

Delete a port by selecting it and pressing the Delete button.

Change Port Type

You can change a port type after right-clicking a port and selecting Conjugate port from the
context menu. An Input port is converted into an Output port, and an Output port is converted into
an Input port.

Connections
Connectors are lines that provide connections between ports. Connectors describe how information
flows between components or architectures.

A connector allows two components to interact without defining the nature of the interaction. Set an
interface on a port to define how the components interact.

Connections are visual representations of data flow from an output port to an input port. For
example, a connection from a motor to a sensor carries positional information.

Connect Existing Ports

Connect two ports by dragging a line:

1 Click one of the ports.
2 Keep the mouse button down while dragging a line to the other port.
3 Release the mouse button at the destination port. A black line indicates the connection is

complete. A red-dotted line appears if the connection is incomplete.

1 Architecture Model Editing

1-12

You can take these steps in both directions — input port to output port, or output port to input port.
You cannot connect ports that have the same direction.

A connection between an architecture port and a component port is shown with tags instead of lines.

Connect Components Without Ports

To quickly create ports and connections at the same time, drag a line from one component edge to
another. The direction of this connection depends on which edges of the components are used - left
and top edges are considered inputs, right and bottom edges are considered outputs. You can also
perform this operation from an existing port to a component edge.

 Compose Architectures Visually

1-13

You can create a connection between an edge that is assumed to be an input only with an edge that is
assumed to be an output. For example, you cannot connect a top edge, which is assumed to be an
input, with another top edge, unless one of them already has an output port.

Branch Connections

Connect an output port to multiple input ports by branching a connection. To branch, right-click an
existing connection and drag to an input port while holding the mouse button down. Release the
button to commit the new connection.

Create New Components Through Connections

If you start a connection from an output port and release the mouse button without a destination
port, a new component tentatively appears. Accept the new component by clicking it.

1 Architecture Model Editing

1-14

Change Line Crossing Style for Overlapping Connections

In complex architectural diagrams, connectors can overlap. You can improve the readability of your
diagram by choosing another line crossing style. Navigate to Modeling > Environment > Simulink
Preferences. In Simulink Preferences, select Editor, then select a Line crossing style. The
default line crossing style, Tunnel, is shown below.

Another option, Line Hop, is shown below.

 Compose Architectures Visually

1-15

For more information on line crossing style parameters, see “Line crossing style”.

See Also
Functions
createModel | addComponent | addPort | connect | exportModel | importModel

Blocks
Component

More About
• “Decompose and Reuse Components” on page 1-17
• “Create Interfaces” on page 3-4
• “Author Parameters in System Composer Using Parameter Editor” on page 4-2
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

1 Architecture Model Editing

1-16

Decompose and Reuse Components
Every component in an architecture model can have its own design, or even several design
alternatives. These designs can be architectures modeled in System Composer or behaviors modeled
in Simulink. Engineering systems often use the same component design in multiple places. A common
component, such as power switch, can be part of all electrical components. You can reuse a
component in System Composer within the same model as well as across architecture models.

Decompose Component
A component can have its own architecture. Double-click a component to view or edit its architecture.
When you view the component at this level, its ports appear as architecture ports. Use the Model
Browser to view component hierarchy.

You can add components, ports, and connections at this level to define the architecture.

You can also make a new component from a group of components.

1 Select the components. Either click and drag a rectangle, or select multiple components by
holding the Shift button down.

 Decompose and Reuse Components

1-17

2 Create a component from the selected elements by right-clicking and selecting Create
Component from Selection.

As a result, the new component has the selected components, their ports, and connections as part of
its architecture. Any unconnected ports and connections to components outside of the selection
become ports on the new component.

Any component that has its own architecture displays a preview of its contents.

Create Reference Architecture
Some projects use the same, detailed component in multiple places, and require the design of such a
component to be tightly managed. You can create a reference architecture to reuse the architectural
definition of a component in the same architecture model or across several architecture models.
Create such a reference architecture using this procedure:

1 Right-click the Sensor component and select Save as Architecture Model.

1 Architecture Model Editing

1-18

2 Provide a name for the model. By default, the reference architecture is saved in the same folder
as the architecture model. Browse for or type the full path if you want to save it in a different
folder.

3 System Composer creates an architecture model with the provided name, and links the
component to the new model. The linked model is indicated in the name of the component
between the <> signs.

All architecture models can reference this new architecture model through linked components.

 Decompose and Reuse Components

1-19

Use Reference Architecture
You can use a reference architecture, saved in a separate file, by linking to it from a component.
Right-click the component and select Link to Model. You can also use the Create Reference option
in the element palette directly to create a component that uses a reference architecture.

To link a selected component to an existing architecture model, right-click the Trajectory
Planning component and select Link to Model.

Provide the full path to the reference architecture. If the linked component has its own ports and
components, this content is deleted during linking and replaced by that of the reference architecture.
The ports of the linked component become the architecture ports in the reference architecture.

Any change made in a reference architecture is immediately reflected in the models that link to it. If
you move or rename the reference architecture, the link becomes invalid and the linked component
displays an error. Link the component to a valid reference architecture.

Remove Reference Architecture
In some cases, you have to deviate from the reference architecture for a single component. For
example, a comprehensive sensor model, referenced from a local component, may include too many
features for the motion control architecture at hand and require simplification for that architecture
only. In this case, you can remove the reference architecture to make local changes possible. Right-
click a linked component and select Inline Model.

1 Architecture Model Editing

1-20

This operation provides two options:

• Interface and subcomponents — Ports, interfaces, and subcomponents of the reference
architecture are copied to the component.

• Interface only — The ports and designated interfaces of the reference architecture are reflected
on the component, but the composition is blank.

Once the reference architecture is removed, you can start making changes without affecting other
architectures. However, you cannot propagate local changes to the reference architecture. If you link
to the reference architecture again, local changes are lost.

To remove a Stateflow® chart behavior, see “Remove Stateflow Chart Behavior from Component” on
page 7-17.

Create Variants
A component can have multiple design alternatives, or variants.

A variant is one of many structural or behavioral choices in a variant component.

Use variants to quickly swap different architectural designs for a component while performing
analysis.

A variant control is a string that controls the active variant choice.

Set the variant control to programmatically control which variant is active.

You can model variations for any component in a single architecture model. You can define a mix of
behaviors (defined in a Simulink model) and architectures (defined in a System Composer
architecture model) as variant choices. For example, a component may have two variant options that
represent two alternate structural decompositions.

Convert a Component to a Variant Component adding variant choices to the component. Right-click
the Sensor component and select Add Variant Choice.

 Decompose and Reuse Components

1-21

The badge on the component indicates that it is a variant, and a variant choice is added to the
existing composition. Double-click the component to see variant choices.

Add Variant Choices
You can add more variant choices to a variant component using the Add Variant Choice option.

Open and edit the variant by right-clicking and selecting Variant > Open > Variant Name from the
component context menu.

You can also designate a component as a variant upon creation using the object in the toolstrip.
This creates two variant choices by default.

Activate a specific variant choice using the context menu of the block. Right-click and select Variant
> Label Mode Active Choice > Choice (Component). The active choice is displayed in the header
of the block.

1 Architecture Model Editing

1-22

Create Software Architecture from Component
You can create a software architecture model from a component in a System Composer architecture
model and reference the software architecture model from the component. You can use software
architectures to link Simulink export-function, rate-based, or JMAAB models to components in your
architecture model to simulate and generate code. For more information, see “Create Software
Architecture from Architecture Model Component” on page 10-5.

See Also
Functions
createArchitectureModel | linkToModel | inlineComponent | addVariantComponent |
makeVariant | addChoice | setActiveChoice

Blocks
Reference Component | Variant Component

More About
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Organize System Composer Files in Projects” on page 12-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Decompose and Reuse Components

1-23

Build Architecture Models Programmatically

Build an architecture model programmatically using System Composer™.

Build Model

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a
physical interface, then add components, ports, and connections. Create a profile with stereotypes
and properties and then apply those stereotypes to model elements. Assign an owned interface to a
port. After the model is built, you can create custom views to focus on specific considerations. You
can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data
interface. Add a value type to the interface data dictionary. Assign the type of the data element to the
value type. Add a physical interface and physical element with a physical domain type. Link the data
dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",Description="GPS Signal Strength");
element.setType(valueType);
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",Type="electrical.electrical");
linkDictionary(model,"SensorInterfaces.sldd");

Save the changes to the interface data dictionary.

dictionary.save

Save the model.

model.save

Open the model.

systemcomposer.openModel("mobileRobotAPI");

View the interfaces in the Interface Editor.

1 Architecture Model Editing

1-24

Add components, ports, and connections. Set the physical interface to the physical ports, which you
will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},{'in','physical'});
sensorPorts(2).setInterface(physicalInterface)

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,{'Command','SensorPower1','MotionCommand'},{'in','physical','out'});
planningPorts(2).setInterface(physicalInterface)

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned
data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion component.
In the Interface Editor, switch from Dictionary View to Port Interface View.

Connect components with an interface rule and the default name rule. The interface rule connects
ports on components that share the same interface. By default, the name rule connects ports on
components that share the same name.

 Build Architecture Models Programmatically

1-25

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then
connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem("mobileRobotAPI");

Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to
profiles and then populate the properties with specific values. Along with the built-in analysis
capabilities of System Composer, stereotypes help you optimize your system for performance, cost,
and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

1 Architecture Model Editing

1-26

Create stereotypes for different types of components. You can select these types are based on your
design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements
and analyze nonfunctional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID',Type="uint8");
addProperty(elemSType,'Description',Type="string");
addProperty(pCompSType,'Cost',Type="double",Units="USD");
addProperty(pCompSType,'Weight',Type="double",Units="g");
addProperty(sCompSType,'develCost',Type="double",Units="USD");
addProperty(sCompSType,'develTime',Type="double",Units="hour");
addProperty(sConnSType,'unitCost',Type="double"',Units="USD");
addProperty(sConnSType,'unitWeight',Type="double",Units="g");
addProperty(sConnSType,'length',Type="double",Units="m");

Save Profile

profile.save;

Apply Profile to Model

Apply the profile to the model.

applyProfile(model,"GeneralProfile");

Apply stereotypes to components. Some components are physical components, while others are
software components.

applyStereotype(componentPlanning,"GeneralProfile.softwareComponent")
applyStereotype(componentSensor,"GeneralProfile.physicalComponent")
applyStereotype(componentMotion,"GeneralProfile.physicalComponent")

Apply the connector stereotype to all connections.

batchApplyStereotype(arch,'Connector',"GeneralProfile.standardConn");

Apply the general element stereotype to all connectors and ports.

batchApplyStereotype(arch,'Component',"GeneralProfile.projectElement");
batchApplyStereotype(arch,'Connector',"GeneralProfile.projectElement");

Set properties for each component.

setProperty(componentSensor,'GeneralProfile.projectElement.ID','001');
setProperty(componentSensor,'GeneralProfile.projectElement.Description','''Central unit for all sensors''');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Cost','200');
setProperty(componentSensor,'GeneralProfile.physicalComponent.Weight','450');
setProperty(componentPlanning,'GeneralProfile.projectElement.ID','002');

 Build Architecture Models Programmatically

1-27

setProperty(componentPlanning,'GeneralProfile.projectElement.Description','''Planning computer''');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develCost','20000');
setProperty(componentPlanning,'GeneralProfile.softwareComponent.develTime','300');
setProperty(componentMotion,'GeneralProfile.projectElement.ID','003');
setProperty(componentMotion,'GeneralProfile.projectElement.Description','''Motor and motor controller''');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Cost','4500');
setProperty(componentMotion,'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports.
Connect the components to the architecture and to each other, applying a connector stereotype.
Hierarchy in an architecture diagram creates an additional level of detail that specifies how
components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},{'in','out'});
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),'DestinationElement',"Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,'GeneralProfile.standardConn');

Save the model.

model.save

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Motion');

1 Architecture Model Editing

1-28

Create Model Reference

Model references can help you organize large models hierarchically and define architectures or
behaviors once that you can then reuse. When a component references another model, any existing
ports on the component are removed, and ports that exist on the referenced model will appear on the
component.

Create a new System Composer model. Convert the Controller component into a reference
component to reference the new model. To add additional ports on the Controller component, you
must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");
referenceModel.save

linkToModel(motionController,"mobileMotion");

Save the models.

referenceModel.save
model.save

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function.
The original component is embedded within a variant component as one of the available variant
choices. You can design other variant choices within the variant component and toggle the active

 Build Architecture Models Programmatically

1-29

choice. Variant components allow you to choose behavioral designs programmatically in an
architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the
third argument defines the label. The label identifies the choice. The active choice is controlled by the
label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.

setActiveChoice(variantComp,'MotionAlt')

Arrange the layout by pressıng Ctrl+Shift+A or using this command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI/Planning');

Save the model.

model.save

Clean Up

Run this script to remove generated artifacts before you run this example again.

cleanUpArtifacts

See Also
Functions
createModel | createDictionary | addInterface | addPhysicalInterface | addValueType
| addElement | setType | createOwnedType | linkDictionary | addComponent | addPort |

1 Architecture Model Editing

1-30

setInterface | connect | save | getPort | createProfile | addStereotype | addProperty |
save | applyProfile | applyStereotype | batchApplyStereotype | setProperty |
linkToModel | makeVariant | addChoice | setActiveChoice | closeAll

Blocks
Component | Reference Component | Variant Component

More About
• “Compose Architectures Visually” on page 1-2
• “Define Profiles and Stereotypes” on page 5-2
• “Use Stereotypes and Profiles” on page 5-9
• “Decompose and Reuse Components” on page 1-17
• “Create Interfaces” on page 3-4
• “Organize System Composer Files in Projects” on page 12-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Build Architecture Models Programmatically

1-31

Modeling System Architecture of Small UAV

Overview

This example shows how to use System Composer™ to set up the architecture for a small unmanned
aerial vehicle, composed of six top-level components. Learn how to refine your architecture design by
authoring interfaces, inspect linked textual requirements, define profiles and stereotypes, and run a
static analysis on such an architecture model.

Open the project.

>> scExampleSmallUAV

Starting: Simulink

Each top-level component is decomposed into its subcomponents. Navigate through the hierarchy to
view the composition for each component. The root component, scExampleSmallUAVModel, has
input and output ports that represent data exchange between the system and its environment.

Author Interfaces

Define interfaces for domain-specific data between connections. The information shared between two
ports defined by interface element property values further enhances the specification. To open the
Interface Editor, in the Modeling tab in the toolstrip, click Interface Editor.

1 Architecture Model Editing

1-32

Click the GS Commands port on the architecture model to highlight the
architecture_gsCommands interface and indicate the assignment of the interface.

 Modeling System Architecture of Small UAV

1-33

Inspect Requirements

A Requirements Toolbox™ license is required to inspect requirements in a System Composer
architecture model.

Components in the architecture model link to system requirements defined in
scExampleSmallUAVModel.slreqx. Open the Requirements Manager. In the bottom right
corner of the model pane, click Show Perspectives views. Then, click Requirements.

Select components on the model to see the requirement they link to, or, conversely, select items in the
Requirements view to see which components implement them. Requirements can also be linked to
connectors or ports to allow traceability throughout your design artifacts. To edit the requirements in
smallUAVReqs.slreqx, select the Requirements Editor (Requirements Toolbox) from the menu.

The Carrying Capacity requirement highlights the total mass able to be carried by the aircraft.
This requirement, along with the weight of the aircraft, is part of the mass rollup analysis performed
for early verification and validation.

Define Profiles and Stereotypes

To complete specifications and enable analysis later in the design process, stereotypes add custom
metadata to architecture model elements. This model has stereotypes for these elements:

1 Architecture Model Editing

1-34

• On-board element, applicable to components
• RF connector, applicable to ports
• RF wiring, applicable to connectors

Stereotypes are defined in XML files by using profiles. The profile UAVComponent.xml is attached to
this model. Edit a profile by using the Profile Editor. On the Modeling tab, click Profile Editor.

The display appears below.

Analyze the Model

To run static analyses on your system, create an analysis model from your architecture model. An
analysis model is a tree of instances generated from the elements of the architecture model in which
all referenced models are flattened out, and all variants are resolved.

To open the Instantiate Architecture Model tool, click Analysis Model on the Views menu.

Run a mass rollup on this model. In the dialog, select the stereotypes that you want to include in your
analysis. Select the analysis function by browsing to utilities/massRollUp.m. Set the model
iteration mode to Bottom-up.

 Modeling System Architecture of Small UAV

1-35

Uncheck Strict Mode so that all components can have a Mass property instantiated to facilitate
calculation of total mass. Click Instantiate to generate an analysis.

1 Architecture Model Editing

1-36

Once on the Analysis Viewer screen, click Analyze. The analysis function iterates through model
elements bottom up, assigning the Mass property of each component as a sum of the Mass properties
of its subcomponents. The overall weight of the system is assigned to the Mass property of the top
level component, scExampleSmallUAVModel.

See Also
setInterface | createProfile | addStereotype | addProperty | applyStereotype |
instantiate

More About
• “Create Interfaces” on page 3-4
• “Manage Requirements” on page 2-8
• “Define Profiles and Stereotypes” on page 5-2
• “Analyze Architecture” on page 9-2
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38
• “Organize System Composer Files in Projects” on page 12-2

 Modeling System Architecture of Small UAV

1-37

Model-Based Systems Engineering for Space-Based
Applications

This example provides an overview of the CubeSat Model-Based System Engineering Project
template, available from the Simulink® start page, under Aerospace Blockset™. It demonstrates how
to model a space mission architecture in Simulink with System Composer™ and Aerospace Blockset
for a 1U CubeSat in low Earth orbit (LEO). The CubeSat's mission is to image MathWorks
Headquarters in Natick, Massachusetts at least once per day. The project references the Aerospace
Blockset CubeSat Simulation Project, reusing the vehicle dynamics, environment models, data
dictionaries, and flight control system models defined in that project.

This project demonstrates how to:

• Define system level requirements for a CubeSat mission in Simulink
• Compose a system architecture for the mission in System Composer
• Link system-level requirements to components in the architecture with Requirements Toolbox™
• Model vehicle dynamics and flight control systems with Aerospace Blockset
• Validate orbital requirements using mission analysis tools and Simulink Test™

Open the Project

To create a new instance of the CubeSat Model-Based System Engineering Project, select
Create Project in the Simulink start page. When the project is loaded, an architecture model for the
CubeSat opens.

open("asbCubeSatMBSEProject.sltx");

1 Architecture Model Editing

1-38

Define System-level Requirements

Define a set of system-level requirements for the mission. You can import these requirements from
third-party requirement management tools such as ReqIF (Requirements Interchange Format) files or
author them directly in the Requirements Editor.

This example contains a set of system-level requirements stored in SystemRequirements.slreqx. Open
this requirement specification file in the Requirements Editor. Access the Requirements Editor
from the Apps tab or by double-clicking on SystemRequirements.slreqx in the project folder browser.

Our top level requirement for this mission is:

1 The system shall provide and store visual imagery of MathWorks headquarters [42.2775 N,
71.2468 W] once daily at 10 meters resolution.

Additional requirements are decomposed from this top-level requirement to create a hierarchy of
requirements for the architecture.

 Model-Based Systems Engineering for Space-Based Applications

1-39

Compose a System Architecture

System Composer enables the specification and analysis of architectures for model-based systems
engineering. Use the system-level requirements defined above to guide the creation of an
architecture model in System Composer. The architecture in this example is based on CubeSat
Reference Model (CRM) developed by the International Council on Systems Engineering (INCOSE)
Space Systems Working Group (SSWG) [1].

1 Architecture Model Editing

1-40

The architecture is composed of components, ports, and connectors. A component is a part of a
system that fulfills a clear function in the context of the architecture. It defines an architectural
element, such as a system, subsystem, hardware, software, or other conceptual entity.

Ports are nodes on a component or architecture that represent a point of interaction with its
environment. A port permits the flow of information to and from other components or systems.
Connectors are lines that provide connections between ports. Connectors describe how information
flows between components in an architecture.

Extend the Architecture with Stereotypes and Interfaces

You can add additional levels of detail to an architecture using stereotypes and interfaces.

Stereotypes

Stereotypes extend the architectural elements by adding domain-specific metadata to each element.
Stereotypes are applied to components, connectors, ports, and other architectural elements to
provide these elements with a common set of properties such as mass, cost, power, etc.

Packages of stereotypes used by one or more architectures are stored in profiles. This example
includes a profile of stereotypes called CubeSatProfile.xml. To view, edit, or add new stereotypes to
the profile, open this profile in the Profile Editor from the Modeling Tab.

This profile defines a set of stereotypes that are applied to components and connectors in the
CubeSat architecture.

 Model-Based Systems Engineering for Space-Based Applications

1-41

Stereotypes can also inherit properties from abstract base stereotypes. For example,
BaseSCComponent in the profile above contains properties for size, mass, cost, and power demand.
We can add another stereotype to the profile, CubeSatTotal, and define BaseSCComponent as its
base stereotype. CubeSatTotal adds in its own property, nominalVoltage, but also inherits
properties from its base stereotype.

1 Architecture Model Editing

1-42

In the architecture model, apply the CubeSatTotal stereotype to CubeSat system component
(asbCubeSatArchModel/CubeSat Mission Enterprise/Space Segment/CubeSat). Select
the component in the model. In the Property Inspector, select the desired stereotype from the drop-
down window. Next, set property values for the CubeSat component.

 Model-Based Systems Engineering for Space-Based Applications

1-43

Interfaces

Data interfaces define the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal. Create and manage interfaces from the
Interface Editor. Existing users of Simulink can draw a parallel between interfaces in System
Composer and buses in Simulink. In fact, buses can be used to define interfaces (and vice versa). For
example, the data dictionary asbCubeSatModelData.sldd contains several bus definitions, including
ACSOutBus, that can be viewed in the Interface Editor and applied to architecture ports.

1 Architecture Model Editing

1-44

Visualize the System with Architecture Views

Now that we have implemented our architecture using components, stereotypes, ports, and
interfaces, we can visualize our system with an architecture view. In the Modeling Tab, select Views.

Use the Component Hierarchy view to show our system component hierarchy. Each component also
lists its stereotype property values and ports.

 Model-Based Systems Engineering for Space-Based Applications

1-45

You can also view the hierarchy at different depths of the architecture. For example, navigate to the
Power System Plant component of the architecture by double-clicking the component in the View
Browser.

1 Architecture Model Editing

1-46

 Model-Based Systems Engineering for Space-Based Applications

1-47

Link Requirements to Architecture Components

To link requirements to the architectural elements that implement them, use the Requirements
Manager. Drag the requirement onto the corresponding component, port, or interface. Using this
linking mechanism, we can identify how requirements are met in the architecture model. The column
labeled "Implemented" in the Requirements Manager shows whether a textual requirement has
been linked to a component in the given model. For example, our top-level requirement "Provide
visual imagery" is linked to our top-level component CubeSat Mission Enterprise with
decomposed requirements linked to respective decomposed architectural components.

1 Architecture Model Editing

1-48

Connecting the Architecture to Design Models

As the design process matures through analysis and other systems engineering processes, we can
begin to populate our architecture with dynamics and behavior models. System Composer is built as a
layer on top of Simulink, which enables Simulink models to be directly referenced from the
components we have created. We can then simulate our architecture model as a Simulink model and
generate results for analysis. For example, the GNC subsystem component contains 3 Simulink
model references that are part of the CubeSat Simulation Project.

Double-click these reference components to open the underlying Simulink models. Notice that the
interfaces defined in the architecture map to bus signals in the Simulink model.

 Model-Based Systems Engineering for Space-Based Applications

1-49

This example uses the Spacecraft Dynamics block from Aerospace Blockset to propagate the
CubeSat orbit and rotational states.

1 Architecture Model Editing

1-50

Simulate System Architecture to Validate Orbital Requirements

We can use simulation to verify our system-level requirements. In this scenario, our top level
requirement states that the CubeSat onboard camera captures an image of MathWorks Headquarters
at [42.2775 N, 71.2468 W] once daily at 10 meters resolution. We can manually validate this
requirement with various mission analysis tools. For examples of these analyses, click on the project
shortcuts Analyze with Mapping Toolbox and Analyze with Satellite Scenario.

 Model-Based Systems Engineering for Space-Based Applications

1-51

The satellite scenario created in the Analyze with Satellite Scenario shortcut example is shown above.

Validate Orbital Requirements using Simulink Test

Although we can use MATLAB to visualize and analyze the CubeSat behavior, we can also use
Simulink Test to build test cases. This test case automates the requirements-based testing process by
using the testing framework to test whether our CubeSat orbit and attitude meet our high-level
requirement. The test case approach enables us to create a scalable, maintainable, and flexible
testing infrastructure based on our textual requirements.

This example contains a test file systemTests.mldatx. Double-click this file in the project folder
browser to view it in the Test Manager. Our test file contains a test to verify our top-level
requirement. The "Verify visual imagery" testpoint is mapped to the requirement "Provide visual
imagery" and defines a MATLAB function to use as custom criteria for the test. While this test case is
not a comprehensive validation of our overall mission, it is useful during early development to
confirm our initial orbit selection is reasonable, allowing us to continue refining and adding detail to
our architecture.

1 Architecture Model Editing

1-52

Run the test point in the Test Manager and confirm that the test passes. Passing results indicate that
the CubeSat onboard camera as visibility to the imaging target during the simulation window.

 Model-Based Systems Engineering for Space-Based Applications

1-53

References

[1] “Space Systems Working Group.” INCOSE, 2019, https://www.incose.org/incose-member-
resources/working-groups/Application/space-systems.

See Also
Orbit Propagator | Spacecraft Dynamics | Attitude Profile

Related Examples
• “Compose Architectures Visually” on page 1-2
• “Define Profiles and Stereotypes” on page 5-2
• “Manage Requirements” on page 2-8

1 Architecture Model Editing

1-54

Use Property Inspector in System Composer
The Property Inspector allows you to access and edit properties for different elements in System
Composer.

To open the tool, from the System Composer toolstrip, navigate to Modeling > Property Inspector.
Alternatively, press Ctrl+Shift+I. On a macOS, use the command key instead of Ctrl.

Use the Property Inspector to inspect properties based on context. When you select a component,
port, connector, interface, function, or requirement, the structure of the Property Inspector adapts
to accommodate the given element.

Property Inspector Modes
This table explains where to find more information about authoring properties.

Property Tool
Stereotypes Profile Editor
Parameters Parameter Editor
Interfaces Interface Editor
Requirements Requirements Editor
Functions Functions Editor

View and Edit Stereotypes and Parameters

Launch the small unmanned aerial vehicle (UAV) project.

scExampleSmallUAV

In the Property Inspector, on the root architecture layer of the architecture model, you can view
and edit stereotypes and parameters.

 Use Property Inspector in System Composer

1-55

When you select a component, you can view and edit the stereotypes or parameters assigned to the
component.

1 Architecture Model Editing

1-56

When you select a connector, you can view and edit the stereotypes assigned to the connector.

When you select a port, you can view and edit the stereotypes or interfaces assigned to the port.

 Use Property Inspector in System Composer

1-57

From the Stereotype list, choose an option to apply a stereotype to the model element. Select the
fully qualified name of a stereotype, <profile>.<stereotype>, or create or edit new stereotypes
in the Profile Editor. Use <Add/Edit> when no stereotypes are applied or <New/Edit> when at
least one stereotype is applied. Choose <Remove All> from the Stereotype list to remove all
stereotypes from a model element.

Once you choose a stereotype, select from the list next to the stereotype name. Options include
Remove to remove the stereotype from the element and Reset to default values to reset the
values of the stereotype properties to their defaults. Expand the stereotype to view and edit its
property values.

Use the Parameters list to open the Parameter Editor using the Open Editor option. Reset a
specific parameter to its default value using the Reset to default option. Find the source of the
parameter using Highlight source of parameter. Since parameters can be promoted to higher
parts of the hierarchy, the source of the parameter is not always clear.

View and Edit Interfaces

When you select a data interface on the Interface Editor, you can view and edit the stereotypes in
the Property Inspector.

1 Architecture Model Editing

1-58

Select the edit hyperlink to open the interface in the Interface Editor.

When you select a data element on the Interface Editor, you can view and edit the type, dimension,
unit, complexity, minimum, maximum, and description in the Property Inspector.

 Use Property Inspector in System Composer

1-59

View and Edit Requirements

When you select a requirement with the Requirements Perspective open, you can view and edit the
type, summary, description, and links for the requirement in the Property Inspector.

1 Architecture Model Editing

1-60

View and Edit Functions

Launch the adaptive cruise control example.

openExample('systemcomposer/ACCSoftwareCompositionExample')

When you select a function on the Functions Editor, you can view and edit the stereotypes for the
function in the Property Inspector.

 Use Property Inspector in System Composer

1-61

See Also
applyStereotype | removeStereotype | createInterface | setInterface | addFunction |
Property Inspector

Related Examples
• “Modeling System Architecture of Small UAV” on page 1-32
• “Authoring Functions for Software Components of an Adaptive Cruise Control” on page 10-34
• “Define Profiles and Stereotypes” on page 5-2
• “Define Port Interfaces Between Components” on page 3-2
• “Manage Requirements” on page 2-8

1 Architecture Model Editing

1-62

Requirements

• “Link and Trace Requirements” on page 2-2
• “Manage Requirements” on page 2-8
• “Update Reference Requirement Links from Imported File” on page 2-15

2

Link and Trace Requirements

This example shows how to work with requirements in an architecture model.

Allocate functional requirements to components to establish traceability. By creating a link between a
component and the related requirement, you can track whether all requirements are represented in
the architecture. You can also keep requirements and design in sync, for example, if a requirement
changes or if the design warrants a revision of the requirements. You can link components to
requirements in Requirements Toolbox™, test cases in Simulink® Test™, or selections in MATLAB®,
Microsoft® Excel®, or Microsoft Word.

A Requirements Toolbox license is required to link, trace, and manage requirements in System
Composer™.

Open the model exMobileRobot.

systemcomposer.openModel("exMobileRobot");

Manage requirements and architecture together in the Requirements Manager from Requirements
Toolbox. Navigate to Apps > Requirements Manager. You are now in the Requirements Perspective
in System Composer.

2 Requirements

2-2

Links can be created and managed through the Requirements Perspective. For more information, see
“Manage Requirements” on page 2-8. This example shows an alternative approach using the
Requirements Editor.

Open the requirements in the Requirements Editor (Requirements Toolbox).

slreq.load('MobileRobotRequirements');

slreq.editor

Select the requirement to be linked.

 Link and Trace Requirements

2-3

Select the component to be linked in the architecture model. Right-click and select Requirements >
Link to Selection in Requirements Browser.

2 Requirements

2-4

When you first link a requirement in an architecture model, a link set file with extension .slmx is
created to store requirement links. The Requirements context menu displays the linked
requirements.

You can also create a link using the Requirements Editor. First, select the component in the
architecture model. Then, in the Requirements Editor (Requirements Toolbox), right-click the
requirement and select Link from "<Component Name>" (Component).

 Link and Trace Requirements

2-5

You can also create requirement links with blocks and subsystems in Simulink models. For more
information, see “Link Blocks and Requirements” (Requirements Toolbox).

The badge on a component indicates that it is linked to a requirement. This badge also shows at
the lower-left corner of the architecture model.

2 Requirements

2-6

To trace requirement links to a component, right-click the Command component and select
Requirements > Open Outgoing Links dialog. Here, you can create new requirements, delete
existing ones, and change their order.

See Also

More About
• “Manage Requirements” on page 2-8
• “Organize System Composer Files in Projects” on page 12-2
• “View Requirements Toolbox Links Associated with Model Elements”
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 9-23
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Link and Trace Requirements

2-7

Manage Requirements
Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements.

A Requirements Toolbox™ license is required to link, trace, and manage requirements in System
Composer.

To enhance traceability of requirements, link system, functional, customer, performance, or design
requirements to components and ports. Link requirements to each other to represent derived or
allocated requirements. Manage requirements from the Requirements Manager on an architecture
model or through custom views. Assign test cases to requirements using the Test Manager for
verification and validation.

A Simulink Test™ license is required to use the Test Manager and to create test harnesses for
components in System Composer.

A requirement set is a collection of requirements. You can structure the requirements hierarchically
and link them to components or ports.

Use the Requirements Editor to edit and refine requirements in a requirement set. Requirement
sets are stored in SLREQX files. You can create a new requirement set and author requirements using
Requirements Toolbox, or import requirements from supported third-party tools.

A link is an object that relates two model-based design elements. A requirement link is a link where
the destination is a requirement. You can link requirements to components or ports.

View links using the Requirements Perspective in System Composer. Select a requirement in the
Requirements Browser to highlight the component or the port to which the requirement is assigned.
Links are stored externally as SLMX files.

Mobile Robot Architecture Model

This example shows a mobile robot platform architecture.

Manage Requirements
Manage requirements and architecture together in the Requirements Manager from Requirements
Toolbox. Navigate to Apps > Requirements Manager. You are now in the Requirements Perspective
in System Composer.

2 Requirements

2-8

Trace Requirements
When you click a component in the Requirements Perspective, linked requirements are highlighted.
Conversely, when you click a requirement, the linked components are shown.

 Manage Requirements

2-9

Use Requirements Traceability Diagram
Visualize traceability of requirements and how they are related using a traceability diagram.

Change the View option on the Requirements Manager from Requirements to Links. Right-click
the Trajectory Planning requirement link and select View Traceability Diagram.

2 Requirements

2-10

According to this traceability diagram, the Command component implements the three requirements
Trajectory Planning, Sensing, and Obstacle reaction.

Change the View option on the Requirements Manager from Links back to Requirements.

For more information, see “Visualize Links with a Traceability Diagram” (Requirements Toolbox).

Link Requirements
To directly create a link, drag a requirement onto a component or port.

 Manage Requirements

2-11

You can close the annotation that shows the link as necessary. This action does not delete the link.

You can exit the Requirements perspective by clicking the perspectives menu on the lower-right
corner of the architecture model and selecting Exit perspective.

2 Requirements

2-12

For more information on managing requirements from external documents, see “Manage Navigation
Backlinks in External Requirements Documents” (Requirements Toolbox). To integrate the
requirement links to the model, see “Update Reference Requirement Links from Imported File”.

Verify and Validate Requirements Using Test Harnesses
A test harness is a model that isolates the component under test with inputs, outputs, and verification
blocks configured for testing scenarios. You can create a test harness for a model component or for a
full model. A test harness gives you a separate testing environment for a model or a model
component.

For more information, see “Create a Test Harness” (Simulink Test).

Create a test harness for a System Composer component to validate simulation results and verify
design. The Interface Editor is accessible in System Composer test harness models to enable
behavior testing and implementation-independent interface testing.

Use Simulink Test to perform requirement-based testing workflows that include inputs, expected
outputs, and acceptance criteria. For more information on using Simulink Test with Requirements
Toolbox, see “Link to Test Cases from Requirements” (Requirements Toolbox).

Note Test harnesses are not supported for Adapter blocks in architecture models or Component
blocks that contain a Reference Component in software architecture models.

This example uses the architecture model for an unmanned aerial vehicle (UAV) to create a test
harness for a System Composer component. In the MATLAB Command Window, enter this command.

 Manage Requirements

2-13

scExampleSmallUAV

To create a test harness for the Airframe component, right-click the component and select Test
Harness > Create for 'Airframe'. In the Create Test Harness dialog box, specify the name of
your test harness and click OK. Your test harness opens in a new window, and the Harness menu is
available in the toolstrip.

Tip If the model component is not fully wired and in an early step in the design process, you can
select the Advanced Properties tab in the Create Test Harness dialog box and select Create
without compiling the model.

Use the Test Manager with the test harness to create test files and test cases. For more information,
see “Test Harness and Model Relationship” (Simulink Test) and “Create Test Harnesses and Select
Properties” (Simulink Test).

See Also

More About
• “Link and Trace Requirements” on page 2-2
• “Import and Export Architectures” on page 13-2
• “Compose Architectures Visually” on page 1-2
• “Organize System Composer Files in Projects” on page 12-2
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 9-23

2 Requirements

2-14

Update Reference Requirement Links from Imported File

After importing requirement links from a file, update links to reference requirements for the model to
make full use of the Requirements Toolbox™ functionality.

model = systemcomposer.openModel("reqImportExample");

Note: Importing or linking requirements may not work with a web-based Microsoft® Office file
stored in SharePoint or OneDrive. Use a local copy of the file.

Import Requirement Links from Word File

Open the Microsoft® Word file Functional_Requirements.docx with the requirements listed.
Highlight the requirement to link.

In the model, select the component to which to link the requirement. Right-click the component and
select Requirements > Link to Selection in Word.

 Update Reference Requirement Links from Imported File

2-15

Export Model and Save to External File

Export the model and save to an external file.

exportedSet = systemcomposer.exportModel("reqImportExample");
SaveToExcel("exportedModel",exportedSet);

2 Requirements

2-16

Import Requirement Links from File and Import to Model

Use the external file to import requirement links into another model.

structModel = ImportModelFromExcel("exportedModel.xls","Components","Ports", ...
"Connections","PortInterfaces","RequirementLinks");
structModel.readTableFromExcel

systemcomposer.importModel("reqNewExample",structModel.Components, ...
structModel.Ports,structModel.Connections,structModel.Interfaces,structModel.RequirementLinks);

Update Links to Reference Requirements

To integrate the requirement links to the model, update references within the model.

systemcomposer.updateLinksToReferenceRequirements("reqNewExample","linktype_rmi_word","Functional_Requirements.docx")

Open the Requirements perspective from the bottom right corner of the model palette to view the
requirements.

See Also
importModel | exportModel | updateLinksToReferenceRequirements

More About
• “Link and Trace Requirements” on page 2-2
• “Manage Requirements” on page 2-8
• “Import and Export Architecture Models” on page 13-5
• “Custom Link Types” (Requirements Toolbox)

 Update Reference Requirement Links from Imported File

2-17

Interface Management

• “Define Port Interfaces Between Components” on page 3-2
• “Create Interfaces” on page 3-4
• “Assign Interfaces to Ports” on page 3-9
• “Interface Adapter” on page 3-16
• “Manage Interfaces with Data Dictionaries” on page 3-21
• “Reference Data Dictionaries” on page 3-23

3

Define Port Interfaces Between Components
A systems engineering solution in System Composer includes a formal definition of the interfaces
between components. A connection shows that two components have an output-to-input relationship,
and an interface defines the type, dimensions, units, and structure of the data.

A data interface defines the kind of information that flows through a port. The same interface can be
assigned to multiple ports. A data interface can be composite, meaning that it can include data
elements that describe the properties of an interface signal.

Data interfaces represent the information that is shared through a connector and enters or exits a
component through a port. Use the Interface Editor to create and manage data interfaces and data
elements and store them in an interface data dictionary for reuse between models.

A data element describes a portion of an interface, such as a communication message, a calculated or
measured parameter, or other decomposition of that interface.

Data interfaces are decomposed into data elements:

• Pins or wires in a connector or harness.
• Messages transmitted across a bus.
• Data structures shared between components.

A value type can be used as a port interface to define the atomic piece of data that flows through that
port and has a top-level type, dimension, unit, complexity, minimum, maximum, and description.

You can also assign the type of data elements in data interfaces to value types. Add value types to
data dictionaries using the Interface Editor so that you can reuse the value types as interfaces or
data elements.

Use interfaces to describe information transmitted across connections through ports between
components.

• “Create Interfaces” on page 3-4: Design interfaces and nested interfaces in the Interface
Editor with data interfaces, data elements, and value types.

• “Assign Interfaces to Ports” on page 3-9: Assign data interfaces and data elements to ports.
Define owned interfaces local to ports.

• “Manage Interfaces with Data Dictionaries” on page 3-21: Save external interface data
dictionaries to reuse between different models, link data dictionaries to architecture models, and
delete data interfaces from data dictionaries.

• “Reference Data Dictionaries” on page 3-23: Reference data dictionaries so you can selectively
share interface definitions among models. Manage referenced data dictionaries in the Model
Explorer.

• “Interface Adapter” on page 3-16: Use an Adapter block to help connect two components with
incompatible port interfaces by mapping between the two interfaces. Use the Interface Adapter
dialog by double-clicking the Adapter block to map between interfaces, apply an interface
conversion that breaks algebraic loops with unit delays, insert a rate transition for different
sample time rates, or use the Adapter block as a Merge block to merge message lines for
architecture models or both message and signal lines for software architecture models. When
output interfaces are undefined, you can use input interfaces in bus creation mode of the Interface
Adapter to author owned output interfaces as you work.

3 Interface Management

3-2

The architecture model below represents an adapter, an interface data dictionary, a data interface, a
data element, and a value type.

Note System Composer interfaces mirror Simulink interfaces that use buses and value types. For
more information, see “Simplify Subsystem and Model Interfaces with Bus Element Ports”, “Specify
Application-Specific Signal Properties”, and “Implement Component Behavior Using Simulink” on
page 7-2.

See Also

More About
• “Specify Physical Interfaces on Ports” on page 7-24
• “Author Service Interfaces for Client-Server Communication” on page 10-41
• “Modeling System Architecture of Small UAV” on page 1-32
• “Modeling System Architecture of Keyless Entry System” on page 11-25

 Define Port Interfaces Between Components

3-3

Create Interfaces
In this section...
“Mobile Robot Architecture Model” on page 3-4
“Open Interface Editor” on page 3-4
“Create Composite Data Interfaces” on page 3-5
“Create Value Types as Interfaces” on page 3-6
“Nest Interfaces to Reuse Data” on page 3-7

You can create interfaces between components in System Composer to structure transmitted data.
Use composite data interfaces with data elements or value types to manage data defined on ports.
Assign a data interface or value type to a data element so the data element inherits attributes and
reuses data. Use the model below as a starting point before adding interfaces using the Interface
Editor. For interfaces terminology, see “Define Port Interfaces Between Components” on page 3-2.

To manage interfaces shared between models in data dictionaries, see “Manage Interfaces with Data
Dictionaries” on page 3-21. For information on physical interfaces, see “Specify Physical Interfaces
on Ports” on page 7-24.

Mobile Robot Architecture Model

This example shows a mobile robot platform architecture.

Open Interface Editor
To open the Interface Editor, navigate to Modeling > Interface Editor. The Interface Editor will
open at the bottom of the canvas.

3 Interface Management

3-4

Note The System Composer Interface Editor is a web-based widget and might appear blank when
you first launch it. If this occurs, save the model and relaunch MATLAB with the command line option
-cefdisablegpu.

Create Composite Data Interfaces

To add a new data interface definition, click the icon. Name the data interface sensordata.

To add a data element to the data interface, click the icon. Data interface and data element
names must be valid MATLAB variable names.

 Create Interfaces

3-5

You can delete data interfaces and data elements in the Interface Editor using the button.

You can view and edit the properties of an element in the Property Inspector. Right-click the data
element and select Inspect Properties. For data interfaces, use the Property Inspector to apply
stereotypes.

For a comparative view, you can edit data element properties from the relevant Interface Editor
columns.

Create Value Types as Interfaces

To add a value type in the Interface Editor, select the down arrow next to the icon and select
Value Type. Name the value type motorSpeedType. Value type names must be valid MATLAB
variable names.

Right-click the motorSpeed data element and select Set 'Type' > motorSpeedType. The data
element motorSpeed is assigned to the value type motorSpeedType.

3 Interface Management

3-6

Any data changes on the motorSpeedType value type is propagated to the motorSpeed data
element. You can reuse value types any number of times. Data changes on a value type will propagate
to each data element that uses the value type.

Nest Interfaces to Reuse Data
A nested interface contains another data interface. Create a nested data interface by assigning a data
interface as the type of a data element. For information about the corresponding buses, see “Create
Bus Objects Using Type Editor”.

For example, let coordinates be a data interface that consists of x, y, and z coordinates. The
GPSdata data interface includes location and a timestamp. If the location data element is in
the same format as the coordinates interface, you can set its type to coordinates. Right-click
location and select Set 'Type' > coordinates. The available interface options include all value
types and all data interfaces in the model, except the parent of the data element.

The nested data interface displays the inherited data elements.

 Create Interfaces

3-7

Note To change the number of columns that display in the Interface Editor, click the icon.
Select or clear the desired columns to show or hide them.

See Also
Functions
addInterface | removeInterface | addElement | removeElement | connect | setInterface |
addValueType

Blocks
Component

More About
• “Define Port Interfaces Between Components” on page 3-2
• “Specify Physical Interfaces on Ports” on page 7-24
• “Modeling System Architecture of Small UAV” on page 1-32

3 Interface Management

3-8

Assign Interfaces to Ports

In this section...
“Mobile Robot Architecture Model with Interfaces” on page 3-9
“Associate Ports with Interfaces in Property Inspector” on page 3-9
“Assign Interfaces to Ports Using the Context Menu” on page 3-10
“Define Owned Interfaces Local to Ports” on page 3-10
“Select Multiple Ports and Assign Data Interface” on page 3-12
“Specify Source Element or Destination Element for Ports” on page 3-13
“Enable Interface Compatibility Edit-Time Check” on page 3-14

A port interface describes the data that can be passed between ports in a System Composer
architecture model. Data elements within the interface describe characteristics of the data
transmitted across the interface. Data elements can describe the composition of a data interface,
messages transmitted, or data structures shared between components. For interfaces terminology,
see “Define Port Interfaces Between Components” on page 3-2.

This topic will show you how to:

• Use the Property Inspector to assign data interfaces to one port at a time or the Interface
Editor to assign data interfaces to multiple ports.

• Manage owned interfaces that are local to a port and not shared in a data dictionary.
• Assign interfaces to multiple ports at the same time.
• Connect components through ports and specify the source element or the destination element for

the connection.
• Use the interface compatibility edit-time check.

Incompatible data interfaces on either end of a connection can be reconciled with an Adapter block
using the “Interface Adapter” on page 3-16. To manage interfaces shared between models in data
dictionaries, see “Manage Interfaces with Data Dictionaries” on page 3-21. For information on
physical interfaces, see “Specify Physical Interfaces on Ports” on page 7-24.

Mobile Robot Architecture Model with Interfaces

This example shows a mobile robot hardware architecture with interfaces defined.

Associate Ports with Interfaces in Property Inspector
To assign data interfaces or value types to one port at a time, use the Property Inspector. To open
the Property Inspector, navigate to Modeling > Property Inspector. To show the SensorData
port properties, select the port in the model. Expand Interface, and from the Name list, select
sensordata to associate the sensordata interface with the SensorData port.

 Assign Interfaces to Ports

3-9

Assign Interfaces to Ports Using the Context Menu
After you select an interface from the Interface Editor, right-click a port. If the selected interface is
compatible with the port, select Apply selected interface: <interface name> to assign the
interface to the port. If a port already has an interface assigned, when you right click the port, you
can select Clear interface: <interface name> to remove the interface.

After you select a port from the architecture canvas, right-click an interface on the Interface Editor.
To assign the interface to the port, select Assign to Selected Port(s).

Define Owned Interfaces Local to Ports
You can select a value type or data interface from the model data dictionary in the Property
Inspector, or you can create an owned interface.

An owned interface is an interface that is local to a specific port and not shared in a data dictionary
or the model dictionary.

Create an owned interface to represent a value type or data interface that is local to a port.

Note Owned interfaces and value types do not have their own names because they are local to a port
and not shared. The name of the owned interface is derived from the port name.

Manage Owned Interfaces Using Property Inspector

You can edit the data for the owned interface in the Property Inspector. Select the Docking
architecture port. In the Property Inspector, under Interface, from the Name list, select <owned>.

3 Interface Management

3-10

By default, the owned interface Docking becomes an owned value type. Edit interface attributes
directly in the Property Inspector, or select Open in Interface Editor to edit the owned value
type interface.

To convert the owned value type into an owned data interface, click to add a data element.

Manage Owned Interfaces Using Interface Editor

You can also work exclusively from the Interface Editor. Select the component port named
Feedback. In the Interface Editor, change from Dictionary View to Port Interface View.

Click to add data elements to the owned data interface.

 Assign Interfaces to Ports

3-11

To convert the owned data interface to an owned value type, change the Type for Feedback to a valid
MATLAB data type, such as double.

Make Owned Interfaces into Shared Interfaces

To convert an owned interface into a shared interface, right-click the port with the owned interface
and select Convert to shared interface. Alternatively, use the makeOwnedInterfaceShared
function.

Select Multiple Ports and Assign Data Interface
Multiple ports, whether they are connected or not, can use the same data interface definition. When
you assign a data interface to a port, the interface is automatically propagated to connected ports,
provided they do not already have assignments. To simplify batch assignments, select multiple ports,
right-click the data interface, and select Assign to Selected Port(s).

Highlight the ports that use a data interface definition by clicking the interface name in the
Interface Editor.

3 Interface Management

3-12

Specify Source Element or Destination Element for Ports
For connections between the root architecture and a component within the architecture model, you
can add a source element or destination element to the ports.

1 Create a component called Motor and connect it to the root architecture with ports named
MotionData and SpeedData.

2 Define the data interface Wheel with the data elements RotationSpeed and MaxSpeed.
3 Assign the Wheel data interface to the ports on the connection.
4 Select the MotionData port name on the component. A dot and a list of data elements appear.

From the list, select the source element RotationSpeed.
5 Assign the MaxSpeed destination element to the SpeedData port.

 Assign Interfaces to Ports

3-13

Enable Interface Compatibility Edit-Time Check
Edit-time checks report warnings as you build the model and require a Simulink Check™ license.
Types of warnings for interface compatibility include:

• Shared interfaces defined in an interface data dictionary are incompatible across ports on a
connection if different interfaces are assigned to different ports.

• Owned interfaces defined locally on ports are incompatible across ports on a connection if the
value type or data elements do not have the same structure.

To enable edit-time checks on your architecture model, navigate to Modeling > Model Advisor >
Edit-Time Checks. Select the Edit-Time Checks check box.

Connectors highlighted in yellow signify an interface mismatch between different ports on the same
connector. If you click the warning symbol, you see the edit-time check message and a suggestion for
what to do.

3 Interface Management

3-14

For incompatible interfaces on different ports on the same connection, such as different data
interfaces, you can fix the problem by adding an Adapter block to define interface mappings.

See Also
Functions
connect | getDestinationElement | getSourceElement | createOwnedType |
createInterface | makeOwnedInterfaceShared

Blocks
Component | Adapter

More About
• “Define Port Interfaces Between Components” on page 3-2
• “Specify Physical Interfaces on Ports” on page 7-24
• “Modeling System Architecture of Small UAV” on page 1-32

 Assign Interfaces to Ports

3-15

Interface Adapter

A source port and its destination port may be defined by different data interfaces. Such a connection
can represent an intermediate point in design, where components from different sources come
together. To connect components with different data interfaces, use an Adapter block and the
Interface Adapter dialog. For interfaces terminology, see “Define Port Interfaces Between
Components” on page 3-2.

An adapter helps connect two components with incompatible port interfaces by mapping between the
two interfaces. Use the Adapter block to implement an adapter. Open the Interface Adapter by
double-clicking an Adapter block on the connection between the ports.

Use the Interface Adapter in System Composer™ to map interface elements between two ports. You
can also use the Interface Adapter to apply an interface conversion that breaks algebraic loops with
unit delays, inserts a rate transition for different sample time rates, or merges two or more message
or signal lines. When output interfaces are undefined, you can use input interfaces in bus creation
mode of the Interface Adapter to author owned output interfaces.

systemcomposer.openModel("exMobileRobotInterfaces");

Map Incompatible Interfaces

When two connected components with Simulink® behaviors have incompatible interfaces, use an
Adapter block and the Interface Adapter to define the port connections.

1 Add an Adapter block on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 In the Select input box, select a data element. In the Select output box, select a data element.
4 Click the Map and Overwrite button.

3 Interface Management

3-16

You can use an Adapter block to map similar interfaces for an N:1 connection, which is an Adapter
with more than one input port and a single output port. A data element from each input connection
maps to the output connection data elements.

Change the number of input ports on an Adapter block in the same way you add and remove
component ports. For more information, see “Compose Architectures Visually” on page 1-2.

Use Unit Delay to Break Algebraic Loop

When connecting two components with port connections in both directions, an algebraic loop can
occur. To break the algebraic loop, use an Adapter block to insert a unit delay between the
components.

1 Add an Adapter block on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select UnitDelay.

Use Rate Transition Between Simulink Behaviors

When connecting two reference components, the Simulink models the components reference can
have different sample time rates. For compatibility, use an Adapter block to insert a rate transition
between the components.

1 Add an Adapter block on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select RateTransition.

Use Adapter Block as Merge Block

Use an Adapter block as a Merge block to merge multiple message lines for system architecture
models or merge multiple signal and message lines for software architecture models.

 Interface Adapter

3-17

1 Add an Adapter block on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select Merge.

Use Bus Creation Mode to Author Owned Interfaces

When input ports for an Adapter block are typed by interfaces from incoming connections and no
interfaces are defined on the output ports of the Adapter, you can use these interface elements to
author owned interfaces for outgoing connections. Instead of pre-defining interface structures, you
can create the bus structure.

systemcomposer.openModel("SewingMachine");

1. Double-click the Adapter block to open the Interface Adapter dialog in bus creation mode.

2. Click the button to add the input data element Torque to the output port interface for the
port named Signal.

3. Click the button to remove the output data element Displacement from the output port
interface for the port named Signal.

3 Interface Management

3-18

4. Click OK to apply the changes.

The owned interface on the output port of the Adapter block propagates to the connected input port
Signal on the Controller component. The owned interface contains one element, Torque.

 Interface Adapter

3-19

To convert an owned interface into a shared interface, right-click the port with the owned interface
and select Convert to shared interface.

See Also
Blocks
Adapter | makeOwnedInterfaceShared

More About
• “Define Port Interfaces Between Components” on page 3-2
• “Merge Message Lines for Architectures Using Adapter Block” on page 7-29
• “Merge Message Lines Using Adapter Block” on page 10-32

3 Interface Management

3-20

Manage Interfaces with Data Dictionaries
In this section...
“Mobile Robot Architecture Model with Interfaces” on page 3-21
“Save, Link, and Delete Interfaces” on page 3-21

Engineering systems often share interface definitions across multiple components or subsystems.
Data interfaces in System Composer can be stored either locally in a model or in a data dictionary,
depending on the maturity of your system. For interfaces terminology, see “Define Port Interfaces
Between Components” on page 3-2.

An interface data dictionary is a consolidated list of all the interfaces and value types in an
architecture and where they are used.

Local interfaces on a System Composer model can be saved in an interface data dictionary using the
Interface Editor. You can reuse interface dictionaries between models that need to use a given set
of interfaces, elements, and value types. Linked data dictionaries are stored in separate SLDD files.

For more advanced dictionary referencing techniques, see “Reference Data Dictionaries” on page 3-
23.

Mobile Robot Architecture Model with Interfaces

This example shows a mobile robot hardware architecture with interfaces defined.

Save, Link, and Delete Interfaces
By default, interfaces are stored within the architecture model and are not visible outside the model.
If you are in the initial stages of building a system model, store interfaces locally to limit the number
of files that need to be managed. However, if your model is mature to the point of leveraging
componentization workflows like reference architectures and behaviors, storing interfaces in a data
dictionary gives you the ability to share interface definitions across the model hierarchy.

Use the menu to save a data interface to a new or existing data dictionary. To create a new data
dictionary, select Save to new dictionary. Provide a dictionary name.

You can also add the interface definitions in the model to an existing data dictionary by selecting
Link existing dictionary.

 Manage Interfaces with Data Dictionaries

3-21

Use the button to import interface definitions from a Simulink bus object, either from a MAT-file or
the workspace.

Delete a data interface from a dictionary using the button. If the data interface is already being
used by ports in a currently open model, the software returns a warning message. The data interface
is then removed from any ports in the open model that are associated with the data interface.

If a data interface is deleted from a dictionary upon opening another model that shares the dictionary,
a warning will be presented on startup if the deleted interface is used by ports in that model. The
Diagnostic Viewer offers an option to remove the deleted interface from all ports that are still using
it. You can also select ports individually and delete their missing interfaces.

A System Composer model and a data dictionary are separate artifacts. Even when the data
dictionary is linked to the model, changes to the data dictionary (a .sldd file) must be saved
separately from changes to the model (a .slx file). To save changes to a linked data dictionary, use
the button and select Save dictionary. Once a data dictionary is saved, other models can use
its interface definitions by linking to the data dictionary, allowing multiple models to share the same
interface definitions.

See Also
createDictionary | openDictionary | saveToDictionary | linkDictionary |
unlinkDictionary | makeOwnedInterfaceShared

More About
• “Specify Physical Interfaces on Ports” on page 7-24
• “Define Port Interfaces Between Components” on page 3-2

3 Interface Management

3-22

Reference Data Dictionaries
In this section...
“Add Referenced Data Dictionaries” on page 3-23
“Use Referenced Data Dictionaries for Projects with Multiple Models” on page 3-24

Referenced dictionaries in System Composer may be useful when multiple models need to share
some, but not all, interface definitions. and to allow communication between the models. A data
dictionary can reference one or more other data dictionaries. The interface definitions in the
referenced dictionaries are visible in the parent dictionary and can be used by a model that is linked
to the parent dictionary. For interfaces terminology, see “Define Port Interfaces Between
Components” on page 3-2.

To create a data dictionary from interfaces in a model dictionary, see “Manage Interfaces with Data
Dictionaries” on page 3-21.

Add Referenced Data Dictionaries

To add a dictionary reference, open the Model Explorer by clicking , or by navigating to
Modeling > Model Explorer.

On the right side of the Model Explorer app, click Add, then select the file name of the data
dictionary to add as a referenced dictionary. To remove a dictionary reference, highlight the
referenced dictionary, then click Remove.

 Reference Data Dictionaries

3-23

The Interface Editor shows all interfaces accessible to a model, grouped based on their data
dictionary files. In this example, myDictionary.sldd is the data dictionary linked to the model, and
otherDictionary.sldd is a referenced dictionary.

The model can use any of the interfaces listed. You can modify the contents of referenced dictionaries
in the Interface Editor.

Note Referenced dictionaries can reference other data dictionaries. A model that links to a
dictionary has access to all interface definitions in referenced dictionaries, including indirectly
referenced dictionaries.

Use Referenced Data Dictionaries for Projects with Multiple Models
A project may contain multiple models, and it may be useful for the models to share interface
definitions that are relevant to data flows and other communications between models. For more
information, see “Organize System Composer Files in Projects” on page 12-2,

At the same time, each model may have interface definitions that are relevant only to its internal
operations. For example, different components of a system may be represented by different models,
with different teams or different suppliers working on each model, with a system integrator working
on the "top" model that incorporates the various components. Referenced data dictionaries provide a
way for models to share some but not all interface definitions.

In such a multiple-team project, set up a "shared artifacts" data dictionary to store interface
definitions that will be shared by different teams, then set up a data dictionary for each model within
the project to store its own interface definitions. Each data dictionary can then add the shared data
dictionary as a referenced data dictionary. Alternatively, if a model does not need its own interface
definitions, that model can link directly to the shared data dictionary.

3 Interface Management

3-24

The above diagram depicts a project with three models. The model mSystem.slx represents a
system integration model, and mSupplierA.slx and mSuppierB.slx represent supplier models.
The data dictionary dShared.sldd contains interface definitions shared by all the models. The
system integration model is linked to the data dictionary dSystem.sldd, and the Supplier A model is
linked to the data dictionary dSupplierA.sldd; each data dictionary contains interface definitions
relevant to the corresponding model's internal workflow. The data dictionaries dSystem.sldd and
dSupplierA.sldd both reference the shared dictionary dShared.sldd. The mSuppierB.slx
model, by contrast, is linked directly to the shared dictionary dShared.sldd. In this way, all three
models have access to the interface definitions in dShared.sldd.

The following diagrams show the system integration model mSystem, along with the Interface
Editor. Interface definitions contained in the referenced dictionary dShared are associated with the
ports used to communicate between the models mSupplierA and mSupplierB and the rest of the
system integration model.

 Reference Data Dictionaries

3-25

The following diagrams show the supplier model mSupplierA, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports
used to communicate externally, while interface definitions in the private dictionary dSupplierA are
associated with ports whose use is internal to the mSupplierA model.

3 Interface Management

3-26

See Also
addReference | removeReference

More About
• “Define Port Interfaces Between Components” on page 3-2
• “Specify Physical Interfaces on Ports” on page 7-24
• “Organize System Composer Files in Projects” on page 12-2

 Reference Data Dictionaries

3-27

Define Parameters

• “Author Parameters in System Composer Using Parameter Editor” on page 4-2
• “Use Parameters to Store Instance Values with Components” on page 4-6

4

Author Parameters in System Composer Using Parameter
Editor

This example shows how to add and modify parameters for a System Composer™ architecture model
of a propeller by using a top-down authoring workflow available in the Parameter Editor. System
Composer parameters synchronize with Simulink® for seamless simulation and code generation.

1. Create an architecture model called Propeller. Add a component called Hub to the model.

2. Click the Hub component, then open the Property Inspector. Pin the Property Inspector for easy
access. To open the Parameter Editor, go to the Parameters list on the Property Inspector and
select Open Editor from the drop-down list.

3. Click Add parameter. Define the bladePitch parameter with default value 45 and unit degrees.

4 Define Parameters

4-2

4. Click the Propeller root architecture. Open the Parameter Editor. Add a parameter named
advanceSpeed. Set Value as 500, and Unit as mph.

5. Define a parameter named spinningRate. Set Value as 3, and Unit as Hz.

 Author Parameters in System Composer Using Parameter Editor

4-3

6. Click Promote parameter to open the Parameter Promotion: One-To-One section. Under the
component Hub, select the bladePitch parameter. Click Promote to promote the parameter.

Parameter promotion enables easy access to parameter values and preserves distinct parameter
values inside the model during simulation or code generation. Parameter promotion also removes
unnecessary duplication of parameters defined on lower levels of an architectural hierarchy.

7. Change the default value of the promoted parameter bladePitch from the source component Hub
to 72. The new value of the bladePitch parameter now appears for the architecture Propeller.

4 Define Parameters

4-4

See Also
systemcomposer.arch.Parameter | addParameter | getParameter | resetToDefault |
getParameterPromotedFrom | getEvaluatedParameterValue | getParameterNames |
getParameterValue | setParameterValue | setUnit | resetParameterToDefault

More About
• “Use Parameters to Store Instance Values with Components” on page 4-6
• “Use Property Inspector in System Composer” on page 1-55
• “Promote Block Parameters on a Mask”
• “Compose Architectures Visually” on page 1-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Author Parameters in System Composer Using Parameter Editor

4-5

Use Parameters to Store Instance Values with Components

This example shows how to add value types as model arguments to a System Composer™
architecture model of a wheel, mWheelArch.slx, using the Model Explorer. Then, on the System
Composer architecture model mAxleArch.slx, these model arguments are exposed as instance-
specific parameter values that can be changed independently across each component that references
mWheelArch.

Use Model Explorer to Add MATLAB Variables as Model Arguments

Open the mWheelArch model.

systemcomposer.openModel("mWheelArch");

Navigate to Modeling > Model Explorer or enter Ctrl+H. The Model Explorer opens. Expand the
mWheelArch model and select Model Workspace. View the contents of the model workspace. The
workspace contains three Simulink Parameters named Diameter, Pressure, and Wear.

To add a new MATLAB® variable to the model workspace, on the toolstrip menu, click . You can
rename your variable from the default name Var and set its starting value. If you select the
Argument check box, the MATLAB variable becomes a model argument. As a model argument, the
variable can later be exposed as an instance-specific parameter value in an architecture model.
Rename the variable to TreadDepth and set its value to 1, then select it as a model argument.

Use Model Explorer to Add Simulink Parameters as Model Arguments

In the Model Explorer, you can also add Simulink parameters as model arguments. To add a new

Simulink parameter to the model workspace, on the toolstrip menu, click . You can edit the
attributes of a Simulink parameter including: Name, Value, DataType, Dimensions, Complexity,
Min, Max, and Unit. These attributes contribute to the parameter definition when the parameter is

4 Define Parameters

4-6

specified as a model argument. Select the Argument check box to specify a parameter as a model
argument. Rename the variable to PressureBar, set its value to 2000, set its units to mbar, then
select it as a model argument.

Right-click the mWheel model in the Model Explorer. Save these changes to the model workspace,
then close the Model Explorer.

View and Edit Parameters on Components in Architecture Model

Open the mAxleArch architecture model.

systemcomposer.openModel("mAxleArch");

Select the LeftWheel component that references the mWheel model. The parameters appear on the
Property Inspector with default values.

You can expose these parameters as model arguments and then edit the parameters as instance-
specific parameters independently for each component that references the same model. Right-click
the RightWheel component and select Block Parameters (Model Reference). Click the
Instance parameters tab and select the Argument check box for the new parameters Pressure
and TreadDepth.

 Use Parameters to Store Instance Values with Components

4-7

Once selected, these parameters are treated as model arguments of the mAxleArch model and can
be changed independently for each instance the model.

Edit the parameters for the RightWheel component so that Pressure and PressureBar are now
31 psi and 2100 mbar, respectively.

4 Define Parameters

4-8

The corresponding parameter values for the LeftWheel component remain unchanged.

See Also
systemcomposer.arch.Parameter | addParameter | getParameter | resetToDefault |
getParameterPromotedFrom | getEvaluatedParameterValue | getParameterNames |
getParameterValue | setParameterValue | setUnit | resetParameterToDefault

More About
• “Author Parameters in System Composer Using Parameter Editor” on page 4-2
• “Specify Instance-Specific Parameter Values for Reusable Referenced Model” (Simulink Coder)
• “Implement Component Behavior Using Simulink” on page 7-2
• “Compose Architectures Visually” on page 1-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Use Parameters to Store Instance Values with Components

4-9

Define Architectural Properties

• “Define Profiles and Stereotypes” on page 5-2
• “Use Stereotypes and Profiles” on page 5-9
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20
• “Organize and Link Requirements” on page 5-22
• “Design Architecture Models” on page 5-25
• “Define Stereotypes and Perform Analysis” on page 5-32
• “Simulate Architectural Behavior” on page 5-41

5

Define Profiles and Stereotypes
To verify structural and functional requirements, you must capture nonfunctional properties on
elements in a System Composer architecture model. To capture these properties, use stereotyping.

For example, if there is a limit on the total power consumption of a system, the model must be able to
capture the power rating of each electrical component. To define component-specific property values
requires extending built-in model element types with properties corresponding to requirements. In
this case, an electrical component type as an extension of components is a stereotype. By extending
the definition of regular components, you introduce a custom modeling language and framework that
includes specific concepts and terminologies important for the architecture model. Capturing the
individual properties also sets the scene for early parametric analyses and to define custom views.

A stereotype is a custom extension of the modeling language. Stereotypes provide a mechanism to
extend the architecture language elements by adding domain-specific metadata.

Apply stereotypes to model elements such as root-level architecture, component architecture,
connectors, ports, data interfaces, value types, functions, requirements, and links. Functions only
apply to software architectures. You must have a Requirements Toolbox license to apply stereotypes
to requirements and links. A model element can have multiple stereotypes. Stereotypes provide
model elements with a common set of property fields, such as mass, cost, and power.

A property is a field in a stereotype. You can specify property values for each element to which the
stereotype is applied.

Use properties to store quantitative characteristics, such as weight or speed, that are associated with
a model element. Properties can also be descriptive or represent a status. You can view and edit the
properties of each element in the architecture model using the Property Inspector.

Open the Property Inspector by navigating to Modeling > Property Inspector.

A profile is a package of stereotypes that you can use to create a self-consistent domain of element
types.

Author profiles and apply profiles to a model using the Profile Editor. You can store stereotypes for a
project in one or several profiles. When you save profiles, they are stored in XML files.

In this topic, you will learn how to:

1 Create a profile and define stereotypes with properties.
2 Define default stereotypes in a profile to be added to any new element in a model with that

applied profile.
3 Use stereotype-based styling that enhances the appearance of the model based upon specific

features each element represents.

Create a Profile and Add Stereotypes
Create a profile to define a set of component, port, and connection types to be used in an architecture
model. For example, a profile for an electromechanical system, such as a robot, could consist of these
types.

• Component types

5 Define Architectural Properties

5-2

• Electrical component
• Mechanical component
• Software component

• Connection types

• Analog signal connection
• Data connection

• Port types

• Data port

Define a profile using the Profile Editor by navigating to Modeling > Profile Editor. Click New
Profile. Select the new profile to start editing.

Note Before you move, copy, or rename a profile to a different directory, you must close the profile in
the Profile Editor or by using the close function. If you rename a profile, follow the example for the
renameProfile function.

Name the profile and provide a description. Add stereotypes by clicking New Stereotype. You can

delete stereotypes and profiles by clicking the button in their respective menus.

Note To create requirement or link stereotypes, you need a Requirements Toolbox license. For more
information, see “Customize Requirements and Links by Using Stereotypes” (Requirements Toolbox).

Save the profile. The file name is the same as the profile name.

Add Properties with Stereotypes
Select a stereotype in a profile to define it:

• Name — The name of the stereotype, for example, ElectricalComponent.
• Applies to — The model element type to which the stereotype applies. This option can be <all>,

Component, Port, Connector, Interface, Function, Requirement, or Link. You can apply

 Define Profiles and Stereotypes

5-3

this stereotype only to a model element of this type. The model element type Function is only
available for software architecture models. For more information, see “Apply Stereotypes to
Functions of Software Architectures” on page 10-29. The model element types Requirement
and Link require a Requirements Toolbox license.

• Icon — Icon to be shown on the model element with color, if applicable.
• Connector Style — Line style of the connector to be shown on the model with color, if applicable.
• Base stereotype — Other stereotype on which this stereotype is based. This option can be empty.
• Abstract stereotype — A stereotype that is not intended to be applied directly to a model

element. You can use abstract stereotypes only as the base stereotype for other stereotypes.

Add properties to a stereotype using the button. Define these fields for each property:

• Property name — Valid variable name
• Type — Numeric, string, or enumeration data type
• Name — Name of the enumerated type, if applicable
• Unit — Value units as a string
• Default — Default value

Add, delete, and reorder properties using the property toolstrip:

5 Define Architectural Properties

5-4

You can create a stereotype that applies to all model element types by setting the Applies to field to
<all>. With these stereotypes, you can add properties to elements regardless of whether they are
components, ports, connectors, interfaces, functions, requirements, or links.

Define Default Stereotypes
Each profile can have a set of default stereotypes. Use default stereotypes when each new element of
a certain type must assume the same stereotype. System Composer applies a default stereotype to
the root architecture when you import the profile. You can set this default as ProjectComponent in
the Profile Editor using the Stereotype applied to root on import field.

This default stereotype is for the top-level architecture. If a model imports multiple profiles, the
default component stereotype for all profiles apply to the architecture.

 Define Profiles and Stereotypes

5-5

Each component stereotype can also have defaults for the components, ports, and connections added
to its architecture. For example, if you want all new connections in a project component to be analog
connections, set AnalogConnection as a default stereotype for the ProjectComponent stereotype.

When you import the profile ProjectProfile into a model:

• The ProjectComponent stereotype is automatically applied to the root architecture.
• The ElectricalComponent stereotype is automatically applied to all new components in the

architecture model.
• The SignalPort stereotype is automatically applied to all new ports.
• The AnalogConnection stereotype is automatically applied to all new connections.

Use Stereotype-Based Styling
Profiles and stereotypes are used to apply custom metadata on the architecture model elements.
Element styling is an additional visual cue that indicates applied stereotypes.

5 Define Architectural Properties

5-6

You can use provided icons for the component stereotypes or use you own custom icon images.
Custom icons support .png, .jpeg, or .svg image files of size 16-by-16 pixels. The custom icons are
displayed as badges on the components for which the stereotypes are applied.

You can associate a color with component stereotypes. Element styling is an additional visual cue that
indicates applied stereotypes.

Use a preconfigured set of color options for component stereotypes to style the architecture
component headers. See “Use Stereotypes and Profiles” on page 5-9 to learn how to use
stereotypes in your model.

Similarly, you can style architecture connectors using the stereotype settings. You can style
connectors by using connector, port, or port interface stereotypes. Customize styling provides various
color and line style choices. Connector styles are also reflected in architecture and spotlight views.

Connector styling is sourced from the highest-priority stereotype that defines style information.
Connector stereotypes have the highest priority, followed by port stereotypes and then interface
stereotypes.

 Define Profiles and Stereotypes

5-7

When two connectors with different styling merge, if the styling is incompatible, the resulting
connector is displayed in black.

See Also
hasStereotype | hasProperty | editor | systemcomposer.profile.Profile |
systemcomposer.profile.Property | systemcomposer.profile.Stereotype

More About
• “Use Stereotypes and Profiles” on page 5-9
• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9
• “Modeling System Architecture of Small UAV” on page 1-32
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

5 Define Architectural Properties

5-8

Use Stereotypes and Profiles
Use profiles to add properties to components, ports, and connectors in System Composer. Import an
existing profile, apply stereotypes, and add property values. To create a profile, see “Define Profiles
and Stereotypes” on page 5-2.

In this topic, you will learn how to:

1 Import profiles into a model or a dictionary.
2 Apply a stereotype to a model element and add property values.
3 Remove stereotypes using the Property Inspector.
4 Extend stereotypes with other stereotypes to include their properties through an inherited

mechanism. For example, a UserInterface stereotype can be an extension of a
SoftwareComponent stereotype, and add a property called ScreenResolution.

Import Profiles
The Profile Editor is independent from the model that opens it, so you must explicitly import a new
profile into a model. The profile must first be saved with an .xml extension. Navigate to Modeling >

Profiles > Import . Select the profile to import. An architecture model can use multiple profiles
at once.

Alternatively, open the Profile Editor by navigating to Modeling > Profile Editor. You can import a
profile into any open dictionaries or models.

Note For a System Composer component that is linked to a Simulink behavior model, the profile
must be imported into the Simulink model before applying a stereotype from it to the component.
Since the Property Inspector on the Simulink side does not display stereotypes, this workflow is not
finalized.

 Use Stereotypes and Profiles

5-9

To manage profiles after they have been imported, navigate to Modeling > Profiles > Manage

.

Apply Stereotypes
Apply stereotypes to architecture model elements using the Property Inspector or the Apply
Stereotypes dialog. You can also quick-insert a new component with the stereotype applied. For
information about applying stereotypes to functions in software architectures, see “Apply Stereotypes
to Functions of Software Architectures” on page 10-29.

Apply Stereotype Using Property Inspector

Once the profile is available in the model, open the Property Inspector by navigating to Modeling
> Property Inspector. Select a model element.

5 Define Architectural Properties

5-10

In the Stereotype field, use the drop-down to select the stereotype. Only the stereotypes that apply
to the current element type (for example, a port) are available for selection. If no stereotype exists,
you can use the <new / edit> option to open the Profile Editor and create one.

 Use Stereotypes and Profiles

5-11

When you apply a stereotype to an element, a new set of properties appears in the Property
Inspector under the name of the stereotype. To edit the properties, expand this set.

You can set multiple stereotypes for each element.

5 Define Architectural Properties

5-12

Use Apply Stereotypes Dialog to Batch Apply Stereotypes

You can also apply component, port, connector, and interface stereotypes to all applicable elements at
the same architecture level. Navigate to Modeling > Apply Stereotypes. In Apply Stereotypes, from
Apply stereotype(s) to, select Top-level architecture, All elements, Components, Ports,
Connectors, or Interfaces.

Note The Interfaces option is only available if interfaces are defined in the Interface Editor. For
more information, see “Create Interfaces” on page 3-4.

You can also apply stereotypes by selecting a single model element. From Scope, select Selection,
This layer, or Entire model.

 Use Stereotypes and Profiles

5-13

You can also apply stereotypes to data interfaces or value types. When interfaces are locally defined
and you select one or more interfaces in the Interface Editor, the options for Scope are Selection
and Local interfaces.

5 Define Architectural Properties

5-14

When interfaces are stored and shared across a data dictionary and you select one or more interfaces
in the Interface Editor, the options for Scope are Selection and either dictionary.sldd or the
name of the dictionary currently in use.

 Use Stereotypes and Profiles

5-15

Note For the stereotypes to display for interfaces in a dictionary, in the Apply Stereotypes dialog box,
the profile must be imported into the dictionary.

Quick-Insert New Component With Stereotype Applied

You can also create a new component with an applied stereotype using the quick-insert menu. Select
the stereotype as a fully qualified name. A component with that stereotype is created.

5 Define Architectural Properties

5-16

Remove Stereotypes
If a stereotype is no longer required for an element, remove it using the Property Inspector. Click
Select next to the stereotype and choose Remove.

Extend Stereotypes
You can extend a stereotype by creating a new stereotype based on the existing one, allowing you to
control properties in a structural manner. For example, all components in a project may have a part
number, but only electrical components have a power rating, and only electronic components — a
subset of electrical components — have manufacturer information. You can use an abstract
stereotype to serve solely as a base for other stereotypes and not as a stereotype for any architecture
model elements.

 Use Stereotypes and Profiles

5-17

For example, create a new stereotype called ElectronicComponent in the Profile Editor. Select its
base stereotype as FunctionalArchitecture.ElectricalComponent. Define properties you are
adding to those of the base stereotype. Check Show inherited properties at the bottom of the
property list to show the properties of the base stereotype. You can edit only the properties of the
selected stereotype, not the base stereotype.

When you apply the new stereotype, it carries its defined properties in addition to those of its base
stereotype.

5 Define Architectural Properties

5-18

See Also
editor | hasStereotype | hasProperty | systemcomposer.profile.Profile |
systemcomposer.profile.Property | systemcomposer.profile.Stereotype

More About
• “Define Profiles and Stereotypes” on page 5-2
• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9
• “Apply Stereotypes to Functions of Software Architectures” on page 10-29
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Use Stereotypes and Profiles

5-19

Simulate Mobile Robot with System Composer Workflow

Along with other tools, System Composer™ can help you organize and link requirements, design and
allocate architecture models, analyze the system, and implement the design in Simulink®. Follow this
tutorial for the early phase of development of an autonomous mobile robot.

1 “Organize and Link Requirements” on page 5-22: Set up the requirements based on market
research using Requirements Toolbox™.

2 “Design Architecture Models” on page 5-25: Create architecture models to help organize
algorithms and hardware.

3 “Define Stereotypes and Perform Analysis” on page 5-32: Define stereotypes and perform
system analysis to ensure that the life expectancy of the durable components in the robot meets
the customer-specified mean time before repair.

4 “Simulate Architectural Behavior” on page 5-41: Create a Simulink model to simulate realistic
behavior of the mobile robot.

This workflow is represented by the left side of the model-based systems engineering (MBSE) design
diagram.

5 Define Architectural Properties

5-20

See Also

More About
• “Model-Based Design with Simulink”
• “Organize System Composer Files in Projects” on page 12-2

 Simulate Mobile Robot with System Composer Workflow

5-21

Organize and Link Requirements
The first step in model-based systems engineering (MBSE) design using System Composer is to set up
requirements. This functionality requires a Requirements Toolbox license.

Requirements are a collection of statements describing the desired behavior and characteristics of a
system. Requirements ensure system design integrity and are achievable, verifiable, unambiguous,
and consistent with each other. Each level of design should have appropriate requirements. This
mobile robot example has three sets of requirements.

1 Stakeholder needs—A set of end-user needs. Stakeholders are interested in attributes of the
mobile robot associated with endurance, payload, speed, autonomy, and reliability.

2 System requirements—A set of requirements that are linked closely with system-level design.
System requirements include the derived requirements that describe how the system responds to
stakeholder needs.

3 Implementation requirements—A set of requirements that specify subsystems in the model.
Implementation requirements include specifications for the battery, structure, propulsion, path
generation, position, controller, and component life for individual subsystems.

By linking one requirement set to another, each high-level requirement can be traced to
implementation. As the MBSE design evolves, you can use iterative requirements analysis to enhance
requirement traceability and coverage. You can use the traceability diagram to visualize requirement
traceability. See “Visualize Links with a Traceability Diagram” (Requirements Toolbox).

Note This example uses Simscape™ blocks. If you do not have a Simscape license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Link Stakeholder Requirements to System Requirements

The mobile robot example includes a functional, logical, and physical architecture that fulfill
stakeholder needs, system requirements, and implementation requirements.

Load these systems in memory to view their requirement links:

• Functional architecture model
• Logical architecture model
• Physical architecture model

systemcomposer.loadModel("RobotFunctionalArchitecture");
systemcomposer.loadModel("scMobileRobotLogicalArchitecture_SS");
systemcomposer.loadModel("scMobileRobotHardwareArchitecture");

Load these requirement sets into memory:

• Stakeholder needs
• System requirements
• Implementation requirements

5 Define Architectural Properties

5-22

slreq.load("scMobileRobotStakeholderNeeds");
slreq.load("scMobileRobotRequirements");
slreq.load("scMobileRobotSubsystemRequirements");

Open the Requirements Editor (Requirements Toolbox).

slreq.editor

You can link stakeholder needs to derived requirements to keep track of high-level goals. The Mean
Time Before Repair (MTBR) requirement, STAKEHOLDER-07, is refined by the Battery Life
requirement, SYSTEM-REQ-09.

You can set a specific link type. To change link types, in the Requirements Editor (Requirements
Toolbox), select Show Links. For more information, see “Create and Store Links” (Requirements
Toolbox).

 Organize and Link Requirements

5-23

To return to interacting with requirements, in the Requirements Editor (Requirements Toolbox),
select Show Requirements. The Transportation stakeholder needs requirement, STAKEHOLDER-04,
will be implemented by the Localization system requirement, SYSTEM-REQ-05. The robot must be
able to determine its current position with a specified tolerance. Right-click SYSTEM-REQ-05 and
select Select for Linking with Requirement. Then, right-click STAKEHOLDER-04 and select
Create a link from SYSTEM-REQ-05 to STAKEHOLDER-04.

See Also
slreq.editor | slreq.load | systemcomposer.loadModel

More About
• “Manage Requirements” on page 2-8
• “Link and Trace Requirements” on page 2-2
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 9-23

5 Define Architectural Properties

5-24

Design Architecture Models
Architecture models in System Composer describe a system at different levels of abstraction. This
mobile robot example presents three architectures:

1 Functional architecture describes high-level functions and the relationships between them.
2 Logical architecture describes data exchange between electronic hardware and software

components in each subsystem.
3 Physical architecture describes the physical hardware or platform needed for the robot.

Note This example uses Simscape blocks. If you do not have a Simscape license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Design, Specify, and Allocate Architecture Models

The mobile robot example includes a functional, logical, and physical architecture with requirements
linked to components and model-to-model allocations defined.

Functional Architecture Model for Mobile Robot

The functional architecture model describes functional dependencies: controlling a mobile robot
autonomously, localization, path-planning, and path-following. To open the functional architecture
model, double-click the file or run this command.

systemcomposer.openModel("RobotFunctionalArchitecture");

 Design Architecture Models

5-25

Logical Architecture Model for Mobile Robot

The logical architecture model describes the behavior of the mobile robot system for simulation:
trajectory generator, trajectory follower, motor controller, sensor algorithm, and robot and
environment. The connections represent the interactions in the system. To open the logical
architecture model, double-click the file or run this command.

systemcomposer.openModel("scMobileRobotLogicalArchitecture_SS");

Physical Architecture Model for Mobile Robot

The physical architecture model describes the hardware components and their connections: the
sensor, actuators, and embedded processor. The colors and icons indicate the stereotypes used for
each element. To open the physical architecture model, double-click the file or run this command.

systemcomposer.openModel("scMobileRobotHardwareArchitecture");

5 Define Architectural Properties

5-26

Link Requirements to Components

Requirement traceability involves linking technical requirements to components and ports in
architecture models, thereby allowing the connection between an early requirements phase and
system-level design. You can easily track whether a requirement is met by connecting components
back to stakeholder needs. You can add requirement links by dragging requirements to a component.

To view requirements, open the Requirements Manager by navigating to Apps > Requirements
Manager.

The Identify Target Position component in the functional architecture model implements the
Autonomous Charging requirement, STAKEHOLDER-05. To show or hide linked requirements, click
the requirement icon on the top-right corner of a component.

 Design Architecture Models

5-27

5 Define Architectural Properties

5-28

You can view the requirements linked to the hardware architecture model in the Requirements
Browser. After selecting STAKEHOLDER-04, only components related to the Transportation
requirement are shown.

Allocate Architectures

You can allocate functional components to physical components using model-to-model allocations. To
open the Allocation Editor, navigate to Modeling > Allocation Editor, or run this command.

systemcomposer.allocation.editor

Load the allocation sets.

allocSetFunc = systemcomposer.allocation.load("FunctionalAllocation");
allocSetPhys = systemcomposer.allocation.load("PhysicalAllocation");

Allocate Functional to Physical Architectures

Click Scenario 1 under the FunctionalAllocation allocation set.

Select the Component in the Row Filter and Column Filter sections. The Allocation Editor tool
allows you to link components between different architecture models to establish traceability for your
project. Double-click the boxes in the allocation matrix to allocate or deallocate two elements.

 Design Architecture Models

5-29

In the functional architecture, the trajectory generator requires components such as Identify
Target Postion, User Input, and Compute Self Position, so these components are allocated
to the Trajectory Generator component in the logical architecture.

Allocate Logical to Physical Architectures

Click Scenario 1 under the PhysicalAllocation allocation set.

5 Define Architectural Properties

5-30

The autonomy of a vehicle is mostly handled by a target machine, which is an embedded computer
responsible for processing sensor readings to calculate control inputs. Therefore, many functional
components like Robot Body, Sensor Fusion, and Trajectory Generator are allocated to the
Target Machine component in the physical architecture model.

See Also
allocate | addComponent | addPort | connect

More About
• “Compose Architectures Visually” on page 1-2
• “Link and Trace Requirements” on page 2-2
• “Create and Manage Allocations Programmatically” on page 8-8

 Design Architecture Models

5-31

Define Stereotypes and Perform Analysis
Stereotypes add an additional layer of metadata to components, ports, and connectors in System
Composer. A stereotype is a custom extension of the modeling language. Stereotypes provide a
mechanism to extend the architectural language elements by adding domain-specific metadata. The
hardware architecture model provides a basis to understand the stereotypes applied to model
elements, create filtered views based on the stereotypes, and perform an analysis on the model.

Define Stereotypes and Perform Analysis

This mobile robot example includes a profile applied to a physical architecture with stereotypes and
properties defined. You can use views to display stakeholder concerns. Perform a remaining useful
life (RUL) analysis on the life expectancy of the hardware components.

Hardware Architecture Model for Mobile Robot

The hardware architecture model describes the hardware components and their connections: the
sensor, actuators, and embedded processor. The colors and icons indicate the stereotypes used for
each element. To open the hardware architecture model, double-click the file or run this command.

systemcomposer.openModel("scMobileRobotHardwareArchitecture");

5 Define Architectural Properties

5-32

View Stereotypes and Properties in Profile Editor

In this example, the HardwareBaseStereotype stereotype is defined as an abstract stereotype and
is extended to connector and component stereotypes. For example, a DataConnector stereotype is a
connector stereotype that inherits the HardwareBaseStereotype.

To focus on expected time before first maintenance, define properties such as UsagePerDay,
UsagePerYear, and Life. Setting these properties allows you to analyze each hardware component
to make sure the mobile robot will last until first expected year of maintenance. To open the Profile
Editor, navigate to Modeling > Profile Editor.

 Define Stereotypes and Perform Analysis

5-33

In addition to properties like name and mass, the DataConnector stereotype has a property of
enumeration type, TypeOfConnection, that describes which of the three connection types it uses:
RS232, Ethernet, or USB. To generate custom data types, create a script simlar to
ConnectorType.m. For more information, see “Simulink Enumerations”.

Apply Stereotypes to Elements in Model

Once you define stereotypes in the Profile Editor, you can apply them to components, ports, and
connectors. Apply stereotypes using the Property Inspector. To open the Property Inspector, navigate
to Modeling > Property Inspector.

To add stereotypes to elements, select the element in the diagram. In the Property Inspector, select
Main > Stereotype. You can apply multiple stereotypes to the same element. Apply the
MobileRobotProfile.Sensor stereotype to the Lidar Sensor component to add properties.

5 Define Architectural Properties

5-34

Some components remain in use for longer periods of time than others. The Lidar Sensor
component is used for obstacle avoidance in this scenario, so it is always in use except when it is
charging. The RGB Camera only aligns the robot to the charging station, so it is in use for a shorter
period per day. You can change values for the UsagePerDay, UsagePerYear, and Life properties to
determine the expected maintenance time for components that are each used with different
frequency.

 Define Stereotypes and Perform Analysis

5-35

The property ExceedExpectedMaintenance is set to false by default. This property will update
when you run your analysis.

Architecture Views for Hardware Architecture Model

Use the Architecture Views Gallery to review changes you make in the architecture model.
Architecture views allow you to create filtered views and thereby focus on few elements of the model,
which enables you to navigate a complex model more easily.

1 To open the Architecture Views Gallery, navigate to Modeling > Architecture Views.
2 Select New > View to create a new view.
3 Name the view in the View Properties pane on the right.
4 In the bottom pane, under View Configurations > Filter, select from the list Add Component

Filter > Select All Components to show all components in the view. Select Apply .
5 Select the Component Hierarchy view. The hierarchy of the components is flattened to show all

subcomponents in one view.

5 Define Architectural Properties

5-36

6

7 You can apply a filter to view components with the Life Expectancy requirement. Select New >
View and name the view in the View Properties pane on the right.

8 In the bottom pane under View Configurations > Filter, select Add Component Filter.
9

10
Select Apply . Observe the components with the Life property defined.

 Define Stereotypes and Perform Analysis

5-37

11

The components with the Life property defined are components for which expected time before first
maintenance is a concern.

Analyze Hardware Components for Life Expectancy

Analyze the system to check if the components and connectors will last longer than the expected time
before first maintenance. This value is set to two years in the analysis function. Navigate to
Modeling > Analysis Model to open the Instantiate Architecture Model tool.

Select all stereotypes to make them available on the instance model. Select
scMobileRobotAnalysis.m as the analysis function. The iteration order determines in what order
the component hierarchy is analyzed. However, since each component is analyzed separately, the
order does not matter. Select the default iteration order Pre-order.

5 Define Architectural Properties

5-38

Click Instantiate to instantiate the model and open the Analysis Viewer tool. Relevant components
and connectors with stereotypes are shown. Since all stereotypes are selected, all elements with
stereotypes are shown in the instance model. Model analysis will calculate which components and
connectors will last longer than the expected two years. Click Analyze to perform the calculation.

 Define Stereotypes and Perform Analysis

5-39

The components for which usage is not defined are components that last significantly longer than the
expected time and are therefore excluded from analysis. The analysis function calculates whether the
time before first maintenance for each component and connector will exceed Life, which is set to
two years. The unchecked boxes indicate that components and connectors will need maintenance
within two years.

To refresh the instance model in the Analysis Viewer, select Overwrite, then click Refresh. This
action will retrieve the values back from the source model, in this case, the hardware architecture
model. Since ExceedExpectedMaintenance was the only property changed, it reverts back to its
default value. Conversely, when you click Update the property values in the hardware architecture
source update according to the instance model.

See Also
applyProfile | applyStereotype | openViews | instantiate

More About
• “Define Profiles and Stereotypes” on page 5-2
• “Create Architecture Views Interactively” on page 11-5
• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9

5 Define Architectural Properties

5-40

Simulate Architectural Behavior
To simulate the mobile robot logical architecture, link Simulink models to the components or add
Simulink subsystem components. For details, see “Implement Component Behavior Using Simulink”
on page 7-2. These models act as Simulink behaviors and can be simulated in System Composer by
clicking Run. The simulation shows how well the mobile robot follows a trajectory created by a
controller to avoid an obstacle.

Note This example uses Simscape blocks. If you do not have a Simscape license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Simulate Architectural Behavior

The mobile robot example includes a logical architecture with component behaviors defined. You can
run the simulation to watch the mobile robot avoid an obstacle.

Add Behavior to Logical Architecture

The logical architecture model describes the behavior of the mobile robot system for simulation:
trajectory generator, trajectory follower, motor controller, sensor algorithm, and robot and
environment. The connections represent the interactions in the system. Open the logical architecture
model without any behaviors, double-click the file or run this command.

systemcomposer.openModel("scMobileRobotLogicalArchitecture_Initial");

 Simulate Architectural Behavior

5-41

The architecture model describes the behavior of the robot, but no behavior is actually added to the
architecture yet. By adding Simulink or Stateflow® behavior, the logical architecture can also be
simulated.

Create a new behavior based on the interface of a component. If a model or subsystem file already
exists for the behavior, use Link To Model to link to the exisiting model or subsystem. To create
new subsystem reference behavior for the Motor Controller component, right-click and select
Create Simulink Behavior, or, on the toolstrip, click Create Simulink Behavior. For more
information, see “Implement Component Behavior Using Simulink” on page 7-2.

You can create Simulink behaviors using mulitiple methods: Subsystem, Subsystem Reference,
and Model Reference. Use Subsystem to create a subsystem component behavior that is part of
the parent architecture model. Use the Subsystem Reference or Model Reference option to save
the behavior as a separate artifact and reuse the behavior. Physical ports can only cross subsystem
boundaries, so for physical systems, Subsystem Reference or Subsystem are recommended.

If you already have a behavior defined in a model file or subsystem file, use Link To Model to link a
component to the corresponding file. On the toolstrip, click Link to Model, or right-click the
Environment component and select Link to Model to link to the Environment.slx subsystem
file.

5 Define Architectural Properties

5-42

Logical Architecture Model for Mobile Robot

Open the final logical architecture where behavior is added to all the components.

systemcomposer.openModel("scMobileRobotLogicalArchitecture");

The Robot Body and Environment are Simulink subsystem reference components that support
physical ports. The Trajectory Generator is a Simulink subsystem component that also supports
physical ports. The Trajectory Follower and Motion Controller components are represented
as Simulink models linked to the components as referenced models.

A behavior algorithm is created based on port information only. When designing a logical
architecture, you can set the interface of the port to define the information in more detail. For
example, if you know that 800 x 600 RGB images captured at 24 frames per second are transferred
from the camera sensor, then you can set the corresponding port interfaces accordingly to ensure
efficient data transfer. For more information about setting interfaces, see “Define Port Interfaces
Between Components” on page 3-2.

 Simulate Architectural Behavior

5-43

Run Simulation Using Logical Architecture

Once behavior models are linked, you can simulate the architecture model just like any other
Simulink model by clicking Run. Simulation verifies requirements such as Transportation,
Collision Avoidance, and Path Generation.

sim scMobileRobotLogicalArchitecture;

The scope from the MotorController component behavior shows how a simple P-gain controller
performs to follow the reference velocity for one of the wheels on the robot.

5 Define Architectural Properties

5-44

In the Mechanics Explorer (Simscape Multibody), switch to the isometric view by selecting .
Watch the mobile robot avoid an obstacle.

 Simulate Architectural Behavior

5-45

See Also
createSimulinkBehavior

More About
• “Define Port Interfaces Between Components” on page 3-2
• “Explore Simulink Bus Capabilities”
• “Implement Component Behavior Using Simulink” on page 7-2

5 Define Architectural Properties

5-46

Describe System Behavior with
Diagrams

• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Author Sequence Diagram for Traffic Light Example” on page 6-4
• “Use Sequence Diagrams with Architecture Models” on page 6-16
• “Author Sequence Diagram Fragments” on page 6-29
• “Synchronize Sequence Diagrams and Architecture Models” on page 6-40
• “Simulate Sequence Diagrams for Traffic Light Example” on page 6-44

6

Describe System Behavior Using Sequence Diagrams
A sequence diagram represents the expected interaction between structural elements of an
architecture as a sequence of message exchanges.

Use sequence diagrams to describe how the parts of a system interact.

Sequence diagrams are integrated with architecture models in System Composer.

• “Author Sequence Diagram for Traffic Light Example” on page 6-4: Interactively create and edit
a sequence diagram and learn terminology.

• “Author Sequence Diagram Fragments” on page 6-29: Learn how to implement fragments and
more about fragment semantics.

• “Use Sequence Diagrams with Architecture Models” on page 6-16: Create and use sequence
diagrams with architecture models.

• “Synchronize Sequence Diagrams and Architecture Models” on page 6-40: Learn how to
synchronize sequence diagrams with architecture models.

A lifeline is represented by a head and a timeline that proceeds down a vertical dotted line.

The head of a lifeline represents a component in an architecture model.

A message sends information from one lifeline to another. Messages are specified with a message
label.

A message label has a trigger and a constraint. A trigger determines whether the message occurs. A
constraint determines whether the message is valid.

An annotation describes the elements of a sequence diagram.

Use annotations to provide detailed explanations of elements or workflows captured by sequence
diagrams.

A fragment indicates how a group of messages within it execute or interact.

A fragment is used to model complex sequences, such as alternatives, in a sequence diagram.

An operand is a region in a fragment. Fragments have one or more operands depending on the kind
of fragment. Operands can contain messages and additional fragments.

Each operand can include a constraint to specify whether the messages inside the operand execute.
You can express the precondition of an operand as a MATLAB Boolean expression using the input
signal of any lifeline.

6 Describe System Behavior with Diagrams

6-2

See Also

More About
• “Simulate Sequence Diagrams for Traffic Light Example” on page 6-44
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14

 Describe System Behavior Using Sequence Diagrams

6-3

Author Sequence Diagram for Traffic Light Example
You can create, edit, and simulate sequence diagrams in System Composer by accessing the
Architecture Views Gallery. You will learn about the basic terminology and functions of a sequence
diagram in two stages.

• Add lifelines and messages with message labels including triggers and constraints to represent
interactions.

• Include fragments and operands with constraints to further specify the behavior of the interaction.

A lifeline in a sequence diagram represents a component in the architecture. A message represents a
communication across a path between the source lifeline and destination lifeline. The path for a
message must consist of at least two ports and one connector from the architecture model. With
nested messages, the path is more complex due to the hierarchy to be navigated.

For a roadmap of the sequence diagram topics, see “Describe System Behavior Using Sequence
Diagrams” on page 6-2.

This figure shows a traffic light architecture model and a corresponding sequence diagram that
describes one operative scenario. The traffic light model describes a cycling traffic light, the
pedestrian crossing button being pressed, and the lights changing so pedestrians can cross.

To learn how to execute this sequence diagram to simulate the model, see “Simulate Sequence
Diagrams for Traffic Light Example” on page 6-44.

6 Describe System Behavior with Diagrams

6-4

Note This example uses Stateflow blocks. If you do not have a Stateflow license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Traffic Light Example

This traffic light example contains sequence diagrams to describe pedestrians crossing an
intersection. The model describes these steps:

1 The traffic signal cycles from red to green to yellow.
2 When the pedestrian crossing button is pressed, if the traffic signal is green, the traffic signal

transitions from yellow to red for a limited time.

 Author Sequence Diagram for Traffic Light Example

6-5

3 The pedestrians cross while the walk signal is active.

Open the System Composer model that contains the sequence diagrams.

model = systemcomposer.openModel('TLExample');

Open the Architecture Views Gallery to view the sequence diagrams.

openViews(model)

Add Lifelines and Messages
A lifeline is represented by a head and a timeline that proceeds down a vertical dotted line.

The head of a lifeline represents a component in an architecture model.

A message sends information from one lifeline to another. Messages are specified with a message
label.

A message label has a trigger and a constraint. A trigger determines whether the message occurs. A
constraint determines whether the message is valid.

1 Navigate to Modeling > Sequence Diagram to open sequence diagrams in the Architecture
Views Gallery.

2 To create a new sequence diagram, click New > Sequence Diagram.
3 A new sequence diagram called SequenceDiagram1 is created in the View Browser, and the

Sequence Diagram tab becomes active. Under Sequence Diagram Properties, rename the
sequence diagram Inhibit.

4 Select Component > Add Lifeline to add a lifeline. A new lifeline with no name is created and
is indicated by a dotted line.

6 Describe System Behavior with Diagrams

6-6

5 Click the down arrow and select source. The source lifeline detects when the pedestrian
presses the crossing button. Add four more lifelines using the down arrow named poller,
switch, controller, and lampController. The poller lifeline checks if the pedestrian
crossing button has been pressed, switch processes the signal, controller determines which
color the pedestrian lamp and traffic light should display, and lampController changes the
traffic light colors.

6 Draw a line from the source lifeline to the poller lifeline. Start to type sw in the To box, which
will automatically fill in as you type. Once the text has filled in, select sw.

Since the switchout port and sw port are connected in the model, a message is created from
the switchout port to the sw port in the sequence diagram.

7 A message label has a trigger and a constraint. A trigger determines whether the message
occurs, and a constraint determines whether the message is valid. For signal messages, the
trigger is called an edge.

You can enter a condition that specifies a triggering edge with a direction and an expression. You
can also optionally add a constraint in square brackets to the message. Constraints consist of a
MATLAB Boolean expression acting on the inputs of the destination lifeline.

direction(signalPort(+|-)positiveReal)[booleanExpression]

There are three directions for edges:

• crossing — The edge expression is either rising or falling past zero.
• rising — The edge expression is rising from strictly below zero to a value equal to or greater

than zero.

 Author Sequence Diagram for Traffic Light Example

6-7

• falling — The edge expression is falling from strictly above zero to a value equal to or less
than zero.

Click on the message and double-click on the empty message label that appears. Enter this
condition and constraint.

rising(sw-1)[sw==1]

The message will be triggered when the sw signal rises from below 1 to a value of 1 or above.
The constraint in square brackets indicates that if sw is not equal to 1, the message is invalid.

Note Only destination elements are supported for message labels. In this example, switchout
is a source element and cannot be included.

The signal name sw is valid input data on the port for a Stateflow chart behavior. The poller
component with state chart behavior has sw in the Symbols pane.

6 Describe System Behavior with Diagrams

6-8

Note The signal name can also be a data element on a data interface on a port. Enter Tab to
autocomplete the port and data element names. For more information, see “Represent System
Interaction Using Sequence Diagrams”.

In this example, when the sw signal becomes 1, the pedestrian crossing button has been pressed,
and a message to the poller lifeline is recognized.

8 In addition to signal events, sequence diagrams also support message events. Create a message
by drawing a line from the poller lifeline to the switch lifeline. Start typing switchEvent in
the To box until switchEvent is available to select.

 Author Sequence Diagram for Traffic Light Example

6-9

Since there is an existing connection in the architecture model, a message is created from source
port switchEvent.

9 Click the message and double-click the empty message label that appears. Enter this condition
representing the port and constraint.

switchEvent[switchEvent==1]

When the message switchEvent is received and its value is 1, the message has occurred and is
valid.

Add Fragments and Operands
A fragment indicates how a group of messages within it execute or interact.

A fragment is used to model complex sequences, such as alternatives, in a sequence diagram.

An operand is a region in a fragment. Fragments have one or more operands depending on the kind
of fragment. Operands can contain messages and additional fragments.

Each operand can include a constraint to specify whether the messages inside the operand execute.
You can express the precondition of an operand as a MATLAB Boolean expression using the input
signal of any lifeline.

To access the menu of fragments:

1 Click and drag to select two messages.

6 Describe System Behavior with Diagrams

6-10

2 Pause on the ellipsis (...) that appears to access the action bar.

3 A list of fragments appears:

• Alternative (Alt) fragment
• Optional (Opt) fragment
• Loop (Loop) fragment
• Weak sequencing (Seq) fragment
• Strict sequencing (Strict) fragment
• Parallel (Par) fragment

For more information, see “Author Sequence Diagram Fragments” on page 6-29.

 Author Sequence Diagram for Traffic Light Example

6-11

Select the “Alt Fragment” on page 6-35 fragment.

4 The “Alt Fragment” on page 6-35 fragment is added to the sequence diagram with a single
operand that contains the selected messages.

6 Describe System Behavior with Diagrams

6-12

5 Select the fragment to enter an operand condition. Choose a fully qualified name for input data
and use a constraint condition relation.

switch/inhibit==0

This constraint is a precondition that determines when the operand is active. This constraint
specifies that the inhibit flag is set to 0. Thus, pedestrian crossing is allowed at this
intersection using a pedestrian lamp.

 Author Sequence Diagram for Traffic Light Example

6-13

The messages inside an operand can only be executed if the constraint condition is true.
6 Highlight the first operand under the “Alt Fragment” on page 6-35 fragment and select from the

toolstrip Fragment > Add Operand > Insert After. A second operand is added.

Add a constraint condition relation to the second operand. The second operand in an “Alt
Fragment” on page 6-35 fragment represents an elseif condition for which the message will
be executed.

switch/inhibit==1

This constraint represents when the inhibit flag is set to 1. Thus, pedestrian crossing is not
controlled by a walk signal on that intersection.

Create a message with a message label inside the second operand.

6 Describe System Behavior with Diagrams

6-14

For the first operand in the “Alt Fragment” on page 6-35 fragment, since the inhibit flag is set
to 0, the first message to the controller lifeline is recognized when the pedRequest message
is valid. Then, when the switchPed message value is 1, the lampController component
behavior allows pedestrians to cross.

For the second operand in the “Alt Fragment” on page 6-35 fragment, since the inhibit flag is
set to 1, the switch bypasses the controller. The message switchPed with a value of 2 goes
directly to the lampcontroller which does not affect the traffic signal. Pedestrian crossing is
not specifically supported in this traffic intersection.

See Also

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Define Port Interfaces Between Components” on page 3-2

 Author Sequence Diagram for Traffic Light Example

6-15

Use Sequence Diagrams with Architecture Models
You can author sequence diagrams to describe expected system behavior as a sequence of
interactions between components of a System Composer architecture model. Lifelines correspond to
components in an architecture model, and messages correspond to the connectors between the
components. You can create multiple sequence diagrams to represent different operational scenarios
of the system. Sequence diagrams are integrated into the Architecture Views Gallery in System
Composer.

For a roadmap of the sequence diagram topics, see “Describe System Behavior Using Sequence
Diagrams” on page 6-2.

This traffic light example will show you how to:

• Create a sequence diagram.
• Add child lifelines in a sequence diagram.
• Interact with root architecture ports in a sequence diagram using gates.
• Co-create components and keep the architecture model and the sequence diagram in sync.
• Create messages in a sequence diagram.
• Use the model browser to add components.

Note This example uses Stateflow blocks. If you do not have a Stateflow license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Traffic Light Example with Hierarchy for Sequence Diagrams

This traffic light example contains sequence diagrams to describe pedestrians crossing an
intersection. The model describes these steps:

1 The traffic signal cycles from green to yellow to red.
2 When the pedestrian crossing button is pressed, if the traffic signal is green, the traffic signal

transitions from yellow to red for a limited time.
3 The pedestrians cross while the walk signal is active.

Open the System Composer model that contains the sequence diagrams.

model = systemcomposer.openModel("TrafficLight");

Open the Architecture Views Gallery to view the sequence diagrams.

openViews(model)

The sequence diagram in this example represents an operative scenario in the architecture model.

InputPollNested sequence diagram: When the poller recognizes a signal event as inValue rises
to 1, the pedestrian crossing button is pressed. Next, the switch lifeline recognizes a signal event to
lampcontroller as switchPed rises to 1, which activates the pedestrian crossing signal.

6 Describe System Behavior with Diagrams

6-16

Create Sequence Diagram
Use an architecture model in System Composer to represent a traffic light example.

1 Navigate to Modeling > Sequence Diagram to open sequence diagrams in the Architecture
Views Gallery.

2 To create a new sequence diagram, click New > Sequence Diagram.
3 In Sequence Diagram Properties on the right, enter the name PedLoop.
4 Select Component > Add Lifeline from the menu. A box with a vertical dotted line appears on

the canvas. This is the new lifeline.
5 Click the down arrow on the lifeline to view available options. Select the component named

lampSubsystem to be represented by the lifeline.

 Use Sequence Diagrams with Architecture Models

6-17

Add Child Lifelines to Sequence Diagram
You can add child lifelines to a sequence diagram to represent model hierarchy and describe the
interactions between lifelines.

1 From the menu, select Component > Add Lifeline. From the list that appears, select the
Controller component.

2 Child components called lampcontroller and controller are located inside the
lampSubsystem and Controller components, respectively.

6 Describe System Behavior with Diagrams

6-18

3 Select the lampSubsystem lifeline. Navigate to Component > Add Lifeline > Add Child
Lifeline. Select lampcontroller. The lampcontroller child lifeline is now situated below
lampSubsystem in the hierarchy.

4 Repeat these steps for the Controller lifeline to add the controller child lifeline.

 Use Sequence Diagrams with Architecture Models

6-19

Create Sequence Diagram Gates
1 Select the lampcontroller lifeline, then click and drag it to the gutter region. Start typing

tSwitch into the To box and select tSwitch from the list. See that a gate called tSwitch has
been created with a message from the lampcontroller lifeline at the port tSwitch.

2 Return to the architecture diagram. Observe that tSwitch is a root architecture port connected
to the lampcontroller component in the hierarchy through the lampSubsystem component.

6 Describe System Behavior with Diagrams

6-20

Co-Create Components
The co-creation workflow between the sequence diagram and the architecture model keeps the model
synchronized as you make changes to the sequence diagram. Adding both lifelines and messages in a
sequence diagram results in updates to the architecture model. This example shows component co-
creation.

1 From the toolstrip menu, select Component > Add Lifeline. Another box with a vertical dotted
line appears on the canvas to represent a lifeline. In the box, enter the name of a new component
named Machine.

2 Observe that the Machine component is co-created in the architecture diagram.

 Use Sequence Diagrams with Architecture Models

6-21

Synchronize Sequence Diagram and Model
1 Remove the Machine component from the architecture diagram.
2 Return to the sequence diagram and select Synchronize > Check Consistency. See that the

Machine lifeline is highlighted, as it does not correspond to a component.

3 To restore consistency, either remove the Machine lifeline or click Undo in the architecture
model to restore the Machine component.

4 Click Check Consistency again.

For advanced sequence diagram synchronization techniques, see “Synchronize Sequence Diagrams
and Architecture Models” on page 6-40.

Create Messages in Sequence Diagram
You can create a message from an existing connection.

1 Draw a line from the controller lifeline to the lampcontroller lifeline. Start to type
traffic in the To box, which fills in automatically as you type. Once the text fills in, select
traffic.

6 Describe System Behavior with Diagrams

6-22

2 Since the trafficColor port and traffic port are connected in the model, a message is
created from the traffic port to the trafficColor port in the sequence diagram.

3 You can modify the source and destination of a message after the message has been created.
Click the trafficColor message end to select it.

 Use Sequence Diagrams with Architecture Models

6-23

4 Click and drag the trafficColor message end to the Controller parent lifeline, then select
the trafficColor port.

5 Once the trafficColor port is selected, the message end moves from the controller child
lifeline to the Controller parent lifeline.

6 Describe System Behavior with Diagrams

6-24

You can also rename message ends and the associated ports by double-clicking the name of a
message end.

Modify Sequence Diagram Using Model Browser
1 The Views Gallery model browser located on the bottom left of the canvas is called Model

Components. Click and drag the switch child component into the sequence diagram.

2 The sequence diagram is updated with a new lifeline.

 Use Sequence Diagrams with Architecture Models

6-25

3 Click and drag to reorder the lampSubsystem and the Controller lifelines.

Use Annotations to Describe Elements of Sequence Diagram
You can add plain-text annotations to a sequence diagram to describe elements, such as lifelines,
messages, and fragments.

To create an annotation, double-click the canvas at the desired location. Then, enter the annotation
text in the text box that appears on the canvas.

6 Describe System Behavior with Diagrams

6-26

Press Esc or click anywhere outside the text box to apply the changes.

Create Sequence Diagram from View
1 In the MATLAB Command Window, enter scKeylessEntrySystem. The architecture model

opens in the Simulink Editor.
2 To open the Architecture Views Gallery for the model, navigate to Modeling > Views >

Architecture Views.
3 Right-click the Sound System Supplier Breakdown view and select New Sequence

Diagram.

 Use Sequence Diagrams with Architecture Models

6-27

4 A new sequence diagram of lifelines is created with all the components from the view.

See Also

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Define Port Interfaces Between Components” on page 3-2

6 Describe System Behavior with Diagrams

6-28

Author Sequence Diagram Fragments
A sequence diagram describes an expected order of the events logged during execution of a Simulink
model. There are four event types:

1 Signal read
2 Signal write
3 Message send
4 Message receive

These four events cover the two interaction styles described by sequence diagrams: signals and
messages. You can specify events using messages between lifelines. Each message describes a pair of
events. For signals, the pair of events is write followed by read. For messages, the pair of events is
send followed by receive.

To learn more about simulating sequence diagrams, see “Simulate Sequence Diagrams for Traffic
Light Example” on page 6-44.

A fragment indicates how a group of messages within it execute or interact.

A fragment is used to model complex sequences, such as alternatives, in a sequence diagram.

To add a fragment to a sequence diagram, click and drag around a group of messages or other
fragments. A blue box appears. Pause on the ellipsis (…) menu to select from a list of possible
fragments.

The fragment you select is added in the sequence diagram. For more information, see “Add
Fragments and Operands” on page 6-10.

Sequence Diagram Fragments

This example shows an intersection control system to demonstrate how composite fragments are
used in sequence diagrams.

Open the System Composer model that contains the sequence diagrams.

model = systemcomposer.openModel("IntersectionControlSystemS");

 Author Sequence Diagram Fragments

6-29

Open the Architecture Views Gallery to view the sequence diagrams.

openViews(model)

Fragment Semantics
Fragments in a sequence diagram execute messages in a specific order based on the kind of
fragment. The following fragments are supported:

• Alternative (Alt) fragment
• Optional (Opt) fragment
• Loop (Loop) fragment
• Weak sequencing (Seq) fragment
• Strict sequencing (Strict) fragment
• Parallel (Par) fragment

An operand is a region in a fragment. Fragments have one or more operands depending on the kind
of fragment. Operands can contain messages and additional fragments.

Each operand can include a constraint to specify whether the messages inside the operand execute.
You can express the precondition of an operand as a MATLAB Boolean expression using the input
signal of any lifeline.

Seq Fragment

The Seq fragment contains one operand and represents weak sequencing. The Seq fragment
specifies the same ordering constraints as a sequence of messages with no fragment.

Weak sequencing means that the sequence of events on each lifeline is respected, but the sequencing
of events between lifelines can differ from the order shown in the operand.

6 Describe System Behavior with Diagrams

6-30

• On any given lifeline, any event must occur after the event immediately above it on the lifeline. If
a message send or write event occurs from the same lifeline, the order is determined by from how
far down the lifeline the event occurs.

• The send or write event for a message must occur before the corresponding receive or read event.
• If two different message send and receive events or write and read events occur on the same

lifeline, then the first message can be received before or after the second message is sent.

This sequence diagram specifies that after the sensor signal from its hardware interface rises
through 1, the MainStreetController sends a PedButtonMain message to LightSequencer,
which controls the intersection. LightSequencer then tells the hardware interface to turn the
pedestrian lamp red, indicating that pedestrians should wait.

Strict Fragment

The Strict fragment contains one operand and represents strict sequencing.

Strict sequencing follows the weak sequencing found in a “Seq Fragment” on page 6-30 with the
additional constraint that the order of the events in the operand be followed exactly. If messages are
sent from the same lifeline, the order is determined by from how far down the lifeline they are sent.
Messages are received in the order on the operand regardless of which lifeline receives them.

 Author Sequence Diagram Fragments

6-31

This sequence diagram is an example of strict sequencing for an intersection controller. The traffic
lights on the side street should be set to red before the traffic lights on the main street are set to
green. Without strict sequencing, the order in which the street controllers perform their tasks would
be undefined.

You can use the “Seq Fragment” on page 6-30 for a subset of the messages in a Strict fragment if
all the messages do not require strict ordering.

Opt Fragment

The Opt fragment includes a single operand and indicates that the events described might occur or
not. A constraint determines whether the group of messages are valid. If the group of messages are
valid, they can execute, otherwise, this fragment is skipped. If no constraint is specified, the
messages in the Opt fragment are executed only if the messages become valid.

The events in an Opt fragment occur if all of these conditions are met:

• The current event is a valid first event for the operand.
• The condition expressed by the operand constraint evaluates to true.

6 Describe System Behavior with Diagrams

6-32

In this sequence diagram, the LightSequencer knows the state of each controller due to the state
signal. The LightSequencer issues a Stop command to a controller if it is in the flowing (Green)
state, which is indicated by the value 2. The operand in the Opt fragment is executed only if a Stop
command is present and its mainState signal has the value 2. After the Stop command, the
mainState signal falls to 1, indicating a stopping (Yellow) state.

Loop Fragment

A Loop fragment has a single operand with a constraint and an expression describing the minimum
(lower bound) and maximum (upper bound) number of times that the operand repeats. The upper
bound can be *, indicating that there is no maximum. The lower bound can be 0, indicating that the
operand is optional. The default is a lower bound of 0 and an upper bound of *. With the default
lower and upper bounds, the Loop fragment repeats a certain number of times according to the
simulation time or the lower and upper bounds of the architecture model.

 Author Sequence Diagram Fragments

6-33

The single operand in the Loop fragment repeats if all of these conditions are met:

• The current event is a valid first event for the operand.
• The condition expressed by the operand constraint evaluates to true.
• The number of iterations is less than or equal to the upper bound.

The lower bound (1) is the minimum number of iterations of the loop. The upper bound (3) is the
maximum. You can also define a constraint on a Loop fragment operand that determines whether the
loop executes. When the Boolean expression is false, the loop is skipped.

6 Describe System Behavior with Diagrams

6-34

This sequence diagram describes the default cycle of the main street traffic lamps. The
LightSequencer issues a Go command so that the MainStreetController tells the
MainHWInterface to turn the green lamps on. The controller then cycles the lights repeatedly
through yellow, red, and green lamps, as indicated by the Loop fragment. The lower and upper
bounds of the loop fragment are the default values of 0 and *, respectively, indicating that it allows
any number of iterations.

Alt Fragment

The Alt fragment is like an “Opt Fragment” on page 6-32 except that it has two or more operands,
each describing a different message order.

The events for each operand in an Alt fragment occur if all of these conditions are met:

• The current event is a valid first event for the operand.

 Author Sequence Diagram Fragments

6-35

• The condition expressed by the operand constraint evaluates to true.

This sequence diagram shows that there are crossing buttons on the main street and the side street
and either may be pressed. For a description of the first operand, see the sequence diagram for the
“Seq Fragment” on page 6-30.

Par Fragment

Par stands for parallel. A Par fragment can have two or more operands. In a Par fragment, the order
of events in each operand is enforced, but there is no constraint on the order of events in different
operands. You should use Par fragments wherever order between messages is not important because
this fragment imposes few constraints on system design.

6 Describe System Behavior with Diagrams

6-36

 Author Sequence Diagram Fragments

6-37

No matter which crossing button the pedestrian presses, the controller stops traffic on both streets.
This sequence diagram specifies this state using an Alt fragment for the red lamp color. The green
light that indicates safety in crossing, is shown on both streets. The Par fragment indicates that both
the main and side streets show the green color, but order does not matter.

Messages with Ambiguous Order

Due to the nature of signal semantics in block diagrams, predicting the ordering between signal
edges and other events that occur in the same simulation step can be difficult. Signal edges are
where a signal value passes through a threshold indicated by the rising, falling, or crossing keywords.
Small changes to the architecture model can change the order of signal events represented by
sequence diagrams. When a signal edge occurs in the same simulation step as another event, both
messages are marked with an symbol . You can examine both the sequence diagram and
underlying architecture model for potential ambiguity.

To specify that these messages may occur in any order within the same time step, place each
message in separate operands of a “Par Fragment” on page 6-36. The simulation interprets these
messages to occur in any order. Alternatively, change the behavior of the underlying system so these
events happen on different time steps.

6 Describe System Behavior with Diagrams

6-38

See Also

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Implement Component Behavior Using Simscape” on page 7-23
• “Define Port Interfaces Between Components” on page 3-2

 Author Sequence Diagram Fragments

6-39

Synchronize Sequence Diagrams and Architecture Models

This example shows how to maintain consistency between sequence diagrams and an architecture
model.

Open the model.

model = systemcomposer.openModel("mRetargetElements");

Open the Architecture Views Gallery.

openViews(model)

Pull Changes from Architecture Model to Sequence Diagram

1. In the View Browser, select the RepairExample sequence diagram. Inspect the lifeline named
ChildComponent.

2. Return to the model canvas. Marquee select the ChildComponent component. Pause on the
ellipses (...) menu and select Create Subsystem. Specify the name of the new component as
Component. The ChildComponent component is now the child of the Component component.

3. Click Check Consistency on the sequence diagram RepairExample. The sequence diagram has
become inconsistent and the ChildComponent lifeline is highlighted because it is no longer at the
root level of the diagram.

6 Describe System Behavior with Diagrams

6-40

4. Select the ChildComponent lifeline and, on the toolstrip, click Repair. The sequence diagram
RepairExample is updated after changes are pulled from the architecture model
mRetargetElements.

Push Changes from Sequence Diagram to Architecture Model

1. In the View Browser, select the CreateInArchitecture sequence diagram.

2. Marquee select the contents of the sequence diagram, including the two lifelines and the message.

 Synchronize Sequence Diagrams and Architecture Models

6-41

3. In the toolstrip, click Create in Architecture. The architecture model mRetargetElements is
updated after changes are pushed from the sequence diagram.

Retarget Lifeline and Create New Connection in Architecture Model

1. In the View Browser, select the RetargetThenCocreate sequence diagram.

2. Select the B lifeline on the sequence diagram and, from the Architecture Element menu, select C
from the list. The sequence diagram becomes inconsistent, and the message is highlighted.

6 Describe System Behavior with Diagrams

6-42

3. Select the message and, in the toolstrip, click Create in Architecture. A new connection is
created in the architecture model mRetargetElements.

See Also

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14

 Synchronize Sequence Diagrams and Architecture Models

6-43

Simulate Sequence Diagrams for Traffic Light Example

This demonstrates how to simulate a System Composer™ architecture model of a traffic light and
verify that the model simulation results match the interactions within the sequence diagrams of the
model. The example model uses blocks from Stateflow®. If you do not have a Stateflow license, you
can open and simulate the model but only make basic changes such as modifying block parameters.

This traffic light example uses sequence diagrams to describe the process of pedestrians crossing an
intersection.

1 The traffic signal cycles from red to green to yellow.
2 When the pedestrian crossing button is pressed, if the traffic signal is green, the traffic signal

transitions from yellow to red for a limited time.
3 The pedestrians cross while the walk signal is active.

Open the model.

model = systemcomposer.openModel("TLExample");

Open the Architecture Views Gallery to view the sequence diagrams.

openViews(model)

Simulate Inhibit Sequence Diagram

In the View Browser, select the Inhibit sequence diagram. For more information on how to
construct this sequence diagram, see “Author Sequence Diagram for Traffic Light Example” on page
6-4.

6 Describe System Behavior with Diagrams

6-44

To simulate the sequence diagram until the next message, select the Next Message option in the
toolstrip. When the message event switchEvent occurs, the switch lifeline activates.

 Simulate Sequence Diagrams for Traffic Light Example

6-45

Select Continue to continue until the end. Since the inhibit flag is equal to 0, the first operand of
the Alt fragment activates. For more information on the Alt fragment, see “Author Sequence
Diagram Fragments” on page 6-29. The switch lifeline sends a message to the controller lifeline
to change the traffic lamp via the lampcontroller lifeline to stop traffic and allow the pedestrians
to cross the intersection.

6 Describe System Behavior with Diagrams

6-46

If the inhibit flag is set to 1, the switch lifeline bypasses the controller and sends the signal
directly to the lampcontroller lifeline. This action means that pedestrian crossing is not controlled
by a walk signal on this intersection.

Simulate PressDetection Sequence Diagram

In the View Browser, select the PressDetection sequence diagram.

 Simulate Sequence Diagrams for Traffic Light Example

6-47

Observe the PressDetection sequence diagram during model simulation using a
Simulink.SimulationInput object for the sim function. The ObservedSequenceDiagrams
model configuration parameter specifies which sequences diagram to observe. Use sim to set
ObservedSequenceDiagrams for just the simulation.

simIn = Simulink.SimulationInput("TLExample");
simIn = setModelParameter(simIn,"ObservedSequenceDiagrams","PressDetection","ObservedSequenceDiagramsOut","sequenceDiagramOutput");
simOut = sim(simIn);
sequenceDiagramOut = simOut.sequenceDiagramOutput

sequenceDiagramOut = struct with fields:
 Name: 'PressDetection'
 Completed: 1
 NumErrors: 0

Messages where the conditions are met turn green with a checkmark.

6 Describe System Behavior with Diagrams

6-48

When a pedestrian presses the crossing button, the value of the signal sw rises to 1. When this action
happens, the poller lifeline sends the message switchEvent to the switch lifeline. This action
alerts the switch lifeline that a pedestrian is waiting so the switch lifeline can alert the
controller lifeline. The traffic light then turns red to stop traffic, and the walk signal turns on.

Simulate PedestrianCross Sequence Diagram

In the View Browser, select the PedestrianCross sequence diagram.

 Simulate Sequence Diagrams for Traffic Light Example

6-49

6 Describe System Behavior with Diagrams

6-50

To simulate the sequence diagram until the next message, select the Next Message option in the
toolstrip. The value of the message traffic is 1, which indicates that the traffic light color is red.

 Simulate Sequence Diagrams for Traffic Light Example

6-51

6 Describe System Behavior with Diagrams

6-52

The Sequence Viewer describes the simulation events as they occur in the model as the sequence
diagram describes what is expected to occur. On the toolstrip, in the Simulation tab, select Log
Events, then launch the Sequence Viewer from the same location. See that the simulation pauses
when traffic is 1.

Select Next Message three more times to simulate until the traffic light completes one loop from
green to yellow to red again. For more information on the Loop fragment, see “Author Sequence
Diagram Fragments” on page 6-29.

 Simulate Sequence Diagrams for Traffic Light Example

6-53

6 Describe System Behavior with Diagrams

6-54

View the corresponding message events in the Sequence Viewer.

 Simulate Sequence Diagrams for Traffic Light Example

6-55

6 Describe System Behavior with Diagrams

6-56

Select Continue to continue until the end. The pedestrian crossing signal allows the pedestrians
cross by turning the traffic light red. Then, the traffic light continues its cycle.

 Simulate Sequence Diagrams for Traffic Light Example

6-57

6 Describe System Behavior with Diagrams

6-58

View the corresponding message events for the pedestrian crossing messages in the Sequence
Viewer.

 Simulate Sequence Diagrams for Traffic Light Example

6-59

6 Describe System Behavior with Diagrams

6-60

Simulate and Detect Errors with SignalSequence Sequence Diagram

In the View Browser, select the SignalSequence sequence diagram.

Click Run to simulate the sequence diagram to the end. Messages where the conditions are met turn
green with a checkmark.

This step requires a Stateflow license.

Return to the TLExample model. Double-click the lampController component to view the state
chart. In the ped subchart, introduce an error into model execution by changing
pedColor=trafficColors.RED to pedColor=trafficColors.YELLOW. Save the TLExample
model.

 Simulate Sequence Diagrams for Traffic Light Example

6-61

Return to the View Browser. For the SignalSequence sequence diagram, click Clear Results to
clear the green checkmarks and reset sequence diagram simulation. Click Run to simulate the
SignalSequence sequence diagram again.

6 Describe System Behavior with Diagrams

6-62

For the first message from the lampController lifeline to the ped lamp lifeline, the constraints
specified by the sequence diagram are not met by the model execution.

See Also
sim | Simulink.SimulationInput | Simulink.SimulationOutput

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14

 Simulate Sequence Diagrams for Traffic Light Example

6-63

Use Simulink Models with System
Composer

• “Implement Component Behavior Using Simulink” on page 7-2
• “Extract Architecture of Simulink Model Using System Composer” on page 7-12
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Extract Architecture from Simulink Model” on page 7-19
• “Implement Component Behavior Using Simscape” on page 7-23
• “Merge Message Lines for Architectures Using Adapter Block” on page 7-29

7

Implement Component Behavior Using Simulink
System design and architecture definitions can involve a behavior definition for some components,
such as the algorithm for a data processing component. Define components in System Composer
architecture models as behaviors using Simulink subsystem components that are part of the parent
model, or referenced behaviors by linking components to Simulink models or subsystems.

You can simulate the Simulink component implementations in System Composer. Use the Simulation
Data Inspector to view and compare simulation results between model designs.

Create Simulink Behavior with Robot Arm Model

This example shows how to use a robot arm model to create Simulink® behavior from the Motion
component.

1. Open the Robot.slx model.

model = systemcomposer.openModel('Robot');

7 Use Simulink Models with System Composer

7-2

The Robot model has an interface sensordata applied on the ports SensorData.

2. Look up the Motion component.

motionComp = lookup(model,'Path','Robot/Motion');

3. Create a Simulink behavior.

motionComp.createSimulinkBehavior('MotionSimulink');

 Implement Component Behavior Using Simulink

7-3

Create Referenced Simulink Behavior Model
When a component does not require decomposition from an architecture standpoint, you can design
and define the behavior of the component in Simulink. When you link to a Simulink behavior, the
Component block becomes a Reference Component block.

A reference component is a component whose definition is a separate architecture model, Simulink
behavior model, or Simulink subsystem behavior. A reference component represents a logical
hierarchy of other compositions.

You can reuse compositions in the model using reference components. There are three types of
reference components:

• Model references are Simulink models.
• Subsystem references are Simulink subsystems.
• Architecture references are System Composer architecture models.

In this section, you will create a model reference and a subsystem reference. For more information on
architecture references, see “Create Reference Architecture” on page 1-18.

Referenced or linked models are useful for collaborative design with version control using Simulink
projects. For more information, see “Organize System Composer Files in Projects” on page 12-2.

Create Reusable Simulink Behavior Using Model Reference Component

Use Simulink model references to describe the implementation of System Composer components.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior.

2 From the Type list, select Model Reference. Provide the model name MotionSimulink. The
default name is the name of the component.

3 A new Simulink model file with the provided name is created in the current folder. The root-level
ports of the Simulink model reflect the ports of the component. The component in the
architecture model is linked to the Simulink model. The icon on the component indicates that
the component has a Simulink behavior.

7 Use Simulink Models with System Composer

7-4

4 To view the interfaces on the SensorData port converted into Simulink bus elements, double-
click the port in Simulink.

5 To remove model behavior, right-click the linked Motion component and select Inline Model.

For more information on removing referenced behaviors, see “Remove Reference Architecture” on
page 1-20.

Create Reusable Simulink Subsystem Behavior Using Subsystem Reference Component

Use subsystem references to author Simulink or Simscape behaviors with physical ports, connections,
and blocks. For more information, see “Implement Component Behavior Using Simscape” on page 7-
23.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior. Alternatively,

2 From the Type list, select Subsystem Reference. Provide the model name MotionSubsystem.
The default name is the name of the component.

 Implement Component Behavior Using Simulink

7-5

3 A new Simulink subsystem file with the provided name is created in the current folder. The root-
level ports of the Simulink subsystem reflect the ports of the component. The component in the
architecture model is linked to the Simulink subsystem. The icon on the component indicates
that the component has a Simulink subsystem behavior.

You can access and edit referenced Simulink models and subsystems by double-clicking the
Reference Component in the architecture model. When you save the architecture model, all unsaved
referenced Simulink behaviors are also saved, and all linked components are updated.

Create Simulink Subsystem Behavior Using Subsystem Component
A subsystem component is a Simulink subsystem that is part of the parent System Composer
architecture model.

Add Simulink subsystem behavior to a component to author a subsystem component in System
Composer. You cannot synchronize and reuse subsystem components as Reference Component blocks
because the component is part of the parent model.

1 Right-click the Sensor component and select Create Simulink Behavior. Alternatively,
navigate to Modeling > Create Simulink Behavior.

2 From the Type list, select Subsystem.

7 Use Simulink Models with System Composer

7-6

3 The Sensor component is now a Simulink subsystem of the same name that is part of the parent
System Composer architecture model.

The root-level ports of the Simulink model reflect the ports of the component. The icon on the
component indicates that the component has a Simulink subsystem behavior.

4 You can continue to provide specific dynamics and algorithms in the Simulink subsystem
behavior model. Adding root-level ports in the subsystem behavior creates additional ports on the
subsystem component.

5 You can use subsystem components to author Simscape component behaviors with physical ports,
connections, and blocks. For example, this amplifier physical system uses electrical domain
blocks inside a subsystem component in a System Composer architecture model.

 Implement Component Behavior Using Simulink

7-7

Convert Simulink Subsystem Component to Subsystem Reference Component

You can convert existing Simulink subsystem components that are part of the parent System
Composer model to subsystem reference components. The subsystem reference components are
saved separately as a reusable artifact.

1 Right-click the subsystem component block and select Block Parameters (Subsystem).
2 Click the Subsystem Reference tab.

3 Click Convert to open the Convert to Subsystem Reference dialog.
4 Choose a name for the new subsystem file. Optionally, select Transfer test harnesses to

transfer test harnesses. Click Convert to complete the conversion.

7 Use Simulink Models with System Composer

7-8

To convert a subsystem component to a subsystem reference programmatically, use the
createSimulinkBehavior function.

Link to Existing Simulink Behavior Model
You can link to an existing Simulink behavior model or subsystem from a System Composer
component, provided that the component is not already linked to a reference architecture. Right-click
the component and select Link to Model. Type in or browse for the name of a Simulink model or
subsystem.

Any subcomponents and ports in the components are deleted when the component links to a Simulink
model or subsystem. A prompt displays to continue and lose subcomponents and ports.

Note Linking a System Composer component to a Simulink model with root-level enable or trigger
ports is not supported.

You can link protected Simulink models (.slxp) to create component behaviors. You can also convert
an already linked Simulink behavior model to a protected model. The change is reflected when you
refresh the model.

Access Model Arguments as Parameters on Reference Components
System Composer exposes instance-specific parameter values for reusable referenced models.

A parameter is an instance-specific value of a value type.

Parameters are available for inlined architectures and components. Parameters are also available for
components linked to model references or architecture references that specify model arguments. You
can specify independent values for a parameter on each component.

Instance-specific parameter values are visible on the component level. View and edit these values
using the Property Inspector.

 Implement Component Behavior Using Simulink

7-9

Each parameter value can be specified independently for each component that references the model.

For more information, see “Use Parameters to Store Instance Values with Components” on page 4-6.

To add or modify parameters for architectures or components using the Parameter Editor, see
“Author Parameters in System Composer Using Parameter Editor” on page 4-2.

Create Simulink Behavior from Template for Component
To create user-defined templates for Simulink models, see “Create Template from Model”.

After creating and saving a user-defined template, you can link the template to a Simulink behavior.
Right-click the component and select Create Simulink Behavior, or, navigate to Modeling >
Create Simulink Behavior.

7 Use Simulink Models with System Composer

7-10

On the Create Simulink behavior dialog, choose the template and enter a new data dictionary
name if local interfaces are defined. Click OK. The component exhibits a Simulink behavior according
to the template with shared interfaces, if present. Blocks and lines in the template are excluded, and
only configuration settings are preserved. Configuration settings include annotations and styling.

Note that you can use architecture templates by right-clicking a component and selecting Save As
Architecture Model, or navigating to Modeling > Save As Architecture Model.

See Also
Functions
createSimulinkBehavior | linkToModel | createArchitectureModel |
systemcomposer.parameter.ParameterDefinition

Blocks
Reference Component

More About
• “Decompose and Reuse Components” on page 1-17
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Implement Component Behavior Using Simscape” on page 7-23
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Organize System Composer Files in Projects” on page 12-2

 Implement Component Behavior Using Simulink

7-11

Extract Architecture of Simulink Model Using System
Composer

Export an existing Simulink® model to a System Composer™ architecture model. The algorithmic
sections of the original model are removed and structural information is preserved during this
process. Requirements links, if present, are also preserved.

Convert Simulink Model to System Composer Architecture

System Composer converts structural constructs in a Simulink model to equivalent architecture
model constructs:

• Subsystems to components
• Variant subsystems to variant components
• Bus objects to interfaces
• Referenced models to reference components

Open Model

Open the Simulink model of F-14 Flight Control.

f14

7 Use Simulink Models with System Composer

7-12

Export Model

Extract an architecture model from the original model.

systemcomposer.extractArchitectureFromSimulink('f14','F14ArchModel');
Simulink.BlockDiagram.arrangeSystem('F14ArchModel');
systemcomposer.openModel('F14ArchModel');

See Also
extractArchitectureFromSimulink

More About
• “Extract Architecture from Simulink Model” on page 7-19
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20
• “Modeling System Architecture of Small UAV” on page 1-32

 Extract Architecture of Simulink Model Using System Composer

7-13

Implement Component Behavior Using Stateflow Charts
A state chart diagram demonstrates the state-dependent behavior of a component throughout its
state lifecycle and the events that can trigger a transition between states.

Add Stateflow chart behavior to describe a component using state machines. You cannot synchronize
and reuse Stateflow chart behaviors as Reference Component blocks because the component is part
of the parent model.

You can simulate the Stateflow component implementations in System Composer. Use the
Simulation Data Inspector to view and compare simulation results between model designs.

State charts consist of a finite set of states with transitions between them to capture the modes of
operation for the component. Charts allow you to design for different modes, internal states, and
event-based logic of a system. You can also use charts as stubs to mock a complex component
implementation during top-down integration testing. This functionality requires a Stateflow license.
For more information, see “Stateflow”.

Add State Chart Behavior to Component
A System Composer component with stereotypes, interfaces, requirement links, and ports, is
preserved when you add Stateflow Chart behavior.

1 This example uses the architecture model for an unmanned aerial vehicle (UAV) to add state
chart behavior to a component. In the MATLAB Command Window, enter the following command:

scExampleSmallUAV
2 Double-click the Airframe component. Select the LandingGear component on the System

Composer composition editor.
3 Select the Brake port. Open the Interface Editor from the toolstrip Modeling > Interface

Editor. Right-click the interface operatorCmds and select Assign to Selected Port(s).
4 Right-click the LandingGear component and select Create Stateflow Chart Behavior.

Alternatively, navigate to Modeling > Create Stateflow Chart Behavior.

7 Use Simulink Models with System Composer

7-14

5 Double-click LandingGear, which has the Stateflow icon. Navigate to Modeling > Design Data
> Symbols Pane to view the Stateflow symbols. The input port Brake appears as input data in
the symbols pane.

Note Some Stateflow objects remain local to Stateflow charts. Input and output event ports are
not supported in System Composer. Only local events are supported.

 Implement Component Behavior Using Stateflow Charts

7-15

Since Stateflow ports show up as input and output data objects, they must follow Stateflow
naming conventions. Ports are automatically renamed to follow Stateflow naming conventions.
For more information, see “Guidelines for Naming Stateflow Objects” (Stateflow).

6 Select the Brake input and view the interface in the Property Inspector. The interface can be
accessed like a Simulink bus signal. For information on how to use bus signals in Stateflow, see
“Index and Assign Values to Stateflow Structures” (Stateflow).

7 You can populate the Stateflow canvas to represent the internal states of the LandingGear.

7 Use Simulink Models with System Composer

7-16

Remove Stateflow Chart Behavior from Component
You can remove Stateflow chart behavior from a component to delete the contents inside the
Stateflow chart while preserving interfaces on the component.

1 Right-click on the LandingGear component and select Inline Behavior.

2 To confirm the operation to delete all the content inside the Stateflow chart, click OK.
3 The Stateflow chart behavior on the component is removed. Interfaces on the component are

preserved.

 Implement Component Behavior Using Stateflow Charts

7-17

See Also
createStateflowChartBehavior | inlineComponent

More About
• “Compose Architectures Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-17
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Simscape” on page 7-23
• “Extract Architecture from Simulink Model” on page 7-19
• “Describe System Behavior Using Sequence Diagrams” on page 6-2

7 Use Simulink Models with System Composer

7-18

Extract Architecture from Simulink Model
You can use System Composer architecture editing and analysis capabilities on Simulink models. To
do so, extract the architecture from a Simulink model. Model and Subsystem blocks, as well as all
ports in a Simulink model represent architectural constructs, while all other blocks represent some
kind of dynamic or algorithmic behavior. In the architecture model that you obtain from a Simulink
model, you can choose to represent architectural constructs or link to behavior models.

1 Open an example model.

openExample('ReferenceFilesForCollaborationExample')
2 On the Simulation tab, click the Save arrow. From the Export Model To list, select

Architecture Model.

3 Provide a name and path for the architecture model.

 Extract Architecture from Simulink Model

7-19

4 Click Export. A System Composer Editor window opens with an architecture model
corresponding to the Simulink model.

7 Use Simulink Models with System Composer

7-20

Each subsystem in the Simulink model corresponds to a component in the architecture model so that
the hierarchy in the architecture model reflects the hierarchy of the behavior model.

The requirements for subsystems and Model blocks in the Simulink model are preserved in the
architecture model.

Any Model block in the Simulink model that references another model corresponds to a component
that links to that same referenced model.

 Extract Architecture from Simulink Model

7-21

Buses at subsystem and Model block ports, as well as their dictionary links are preserved in the
architecture model.

You can use the exported model to add architecture-related information such as interface definitions,
nonfunctional properties for model elements and analyze the design.

See Also
extractArchitectureFromSimulink

More About
• “Extract Architecture of Simulink Model Using System Composer” on page 7-12
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Implement Component Behavior Using Simscape” on page 7-23
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Compose Architectures Visually” on page 1-2

7 Use Simulink Models with System Composer

7-22

Implement Component Behavior Using Simscape
A physical subsystem is a Simulink subsystem with Simscape connections.

A physical subsystem with Simscape connections uses a physical network approach suited for
simulating systems with real physical components and represents a mathematical model.

Using Simscape behaviors for components in System Composer improves model simulation and
design for systems with physical components. This functionality requires a Simscape license. For
more information, see “Basic Principles of Modeling Physical Networks” (Simscape).

You can simulate the Simscape component implementations in System Composer. Use the
Simulation Data Inspector to view and compare simulation results between model designs.

To describe component behavior in Simscape for a System Composer architecture model, follow these
steps:

1 “Define Physical Ports on Component” on page 7-24
2 “Specify Physical Interfaces on Ports” on page 7-24
3 “Create Simulink Subsystem Component” on page 7-25
4 “Describe Component Behavior Using Simscape” on page 7-26

Open this model to interact with a System Composer architecture model named Fan with Simscape
behavior on a component DC Motor. The steps in this tutorial will produce this model.

Note This example uses Simscape blocks. If you do not have a Simscape license, you can open and
simulate the model but can only make basic changes, such as modifying block parameters.

Architecture Model with Simscape Behavior for a DC Motor

This example shows a DC motor in an architecture model of a fan. The DC motor is modeled using a
Simscape behavior within a Simulink subsystem component.

 Implement Component Behavior Using Simscape

7-23

Define Physical Ports on Component
A physical port represents a Simscape physical modeling connector port called a Connection Port.

Use physical ports to connect components in an architecture model or to enable physical systems in a
Simulink subsystem.

Create a new System Composer architecture model. Add a component called DC Motor to the
canvas. To add physical ports to the component, pause on the boundary of the component until a port
outline appears. Click the port outline and, from the options, select Physical.

Physical ports can also be used to connect to Simscape blocks.

Note Components with physical ports cannot be saved as architecture models, model references,
software architectures, or Stateflow chart behaviors. Components with physical ports can only be
saved as subsystem references or subsystem component behaviors.

Specify Physical Interfaces on Ports
You can specify physical interfaces on the physical ports.

A physical interface defines the kind of information that flows through a physical port. The same
interface can be assigned to multiple ports. A physical interface is a composite interface equivalent to

7 Use Simulink Models with System Composer

7-24

a Simulink.ConnectionBus object that specifies any number of Simulink.ConnectionElement
objects.

Use a physical interface to bundle physical elements to describe a physical model using at least one
physical domain.

A physical element describes the decomposition of a physical interface. A physical element is
equivalent to a Simulink.ConnectionElement object.

Define the Type of a physical element as a physical domain to enable use of that domain in a physical
model.

1 To open the Interface Editor, navigate to Modeling > Interface Editor.
2

To add a new physical interface definition, click the list next to the icon and select Physical
Interface. Name the physical interface ElectricalInterface.

3 To add a physical element to the physical interface, click the icon. Physical interface and
physical element names must be valid MATLAB variable names. Create the physical elements
Positive and Negative.

4 In the Type column, define the Simscape domain to which these physical elements belong. In this
case, both belong to foundation.electrical.electrical.

5 Select the E port on the DC Motor component. Right-click the ElectricalInterface physical
interface on the Interface Editor and click Assign to Selected Port(s).

Create Simulink Subsystem Component
You can create a Simulink subsystem in System Composer to enable direct Simscape integration. For
more information, see “Create Simulink Subsystem Behavior Using Subsystem Component” on page
7-6.

Select the DC Motor component. Navigate to Modeling > Create Simulink Behavior, or use the
right-click menu on the component.

 Implement Component Behavior Using Simscape

7-25

Click OK.

You can convert a subsystem component that is part of the parent System Composer model into a
subsystem reference behavior then save and reuse the subsystem as a separate artifact. For more
information, see “Convert Simulink Subsystem Component to Subsystem Reference Component” on
page 7-8.

Describe Component Behavior Using Simscape
Double-click the subsystem component to describe component behavior using Simscape. For the DC
motor this example is based on, see “Evaluating Performance of a DC Motor” (Simscape).

The physical interface can be decomposed into physical elements using a Simscape bus. Each
physical element represents a conserving connection associated with a domain in Simscape.
Simscape buses bundle conserving connections. For more information, see Simscape Bus (Simscape).

Add a Simscape Bus block next to the E physical port. Double-click the Simscape Bus and select the
connection type Bus: ElectricalInterface. Connect the E physical port to the Simscape Bus
block. The domain foundation.electrical.electrical defined under the Type of the
Positive and Negative physical elements are used for any connections from these ports.

7 Use Simulink Models with System Composer

7-26

You can also use owned interfaces defined locally on ports to enable domain-specific lines on a
Simscape behavior model in System Composer. Edit the port interface through the Property
Inspector. Navigate to Modeling > Property Inspector. In this case, Simscape Bus blocks are not
needed, and the port can connect directly to the physical connection of the specified domain. Add an
owned physical interface to the physical port R with Type as a
foundation.mechanical.rotational.rotational domain. Selecting edit to Open in
Interface Editor enters the Port Interface View in the Interface Editor. For more information,
see “Define Owned Interfaces Local to Ports” on page 3-10.

Using the Library Browser, retrieve the following Simscape blocks and construct the DC Motor model
with electrical and rotational mechanical domain-specific connectors.

A physical connector can represent a nondirectional conserving connection of a specific physical
domain. Connectors can also represent physical signals.

Use physical connectors to connect physical components that represent features of a system to
simulate mathematically.

For more information, see “Domain-Specific Line Styles” (Simscape).

 Implement Component Behavior Using Simscape

7-27

Physical modeling uses the network approach and is therefore different from regular Simulink
modeling. For more information, see “Modeling Best Practices” (Simscape) and “Troubleshooting
Simulation Errors” (Simscape).

See Also
createSimulinkBehavior | addPort | addPhysicalInterface | addElement | setInterface
| createInterface

More About
• “Describe System Behavior Using Sequence Diagrams” on page 6-2
• “Implement Component Behavior Using Simulink” on page 7-2
• “Implement Component Behavior Using Stateflow Charts” on page 7-14
• “Define Port Interfaces Between Components” on page 3-2

7 Use Simulink Models with System Composer

7-28

Merge Message Lines for Architectures Using Adapter Block

This example shows how to use an Adapter block to merge multiple message lines in a System
Composer™ architecture model.

Open the model.

systemcomposer.openModel('mSysArchMessageMerge');

In this model, message-based communication is constructed between three software components: two
send components, SAC1 and SAC2, create messages and send them to a receive component, SAC3.

• The SAC1 component linked to the Simulink® behavior model mBottomupMsg1 generates
messages with value 1 with a 0.1 sample time.

• The SAC2 component linked to the Simulink behavior model mBottomupMsg2 generates messages
with value 8 with a 0.2 sample time.

• The SAC3 component linked to the Simulink behavior model mBottomupMsg3 receives the merged
messages using a rate-based Subsystem block with a 0.5 sample time.

A first-in, first-out (FIFO) queue is used as a message buffer between the components.

You can double-click the Adapter block to view the “Interface Adapter” on page 3-16 dialog box.
Confirm that the interface conversion Merge is applied. Mappings are now disabled.

 Merge Message Lines for Architectures Using Adapter Block

7-29

Simulate the model to merge the messages from the send components SAC1 and SAC2 produced by
Simulink behaviors into a single destination, the receive component SAC3.

sim('mSysArchMessageMerge');

Launch the Simulation Data Inspector to view the three messages together on the same diagram.

Simulink.sdi.view

7 Use Simulink Models with System Composer

7-30

See Also
Simulation Data Inspector | Adapter | Send | Receive

Related Examples
• “Merge Message Lines Using Adapter Block” on page 10-32
• “Merge Message Lines Using a Message Merge Block”
• “Create A Rate-Based Model”

 Merge Message Lines for Architectures Using Adapter Block

7-31

Allocate Architecture Models

• “Create and Manage Allocations Interactively” on page 8-2
• “Create and Manage Allocations Programmatically” on page 8-8
• “Allocate Architectures in Tire Pressure Monitoring System” on page 8-10
• “Systems Engineering Approach for SoC Applications” on page 8-15

8

Create and Manage Allocations Interactively
This example shows how to create and manage System Composer allocations interactively on the
model canvas and using the Allocation Editor.

In systems engineering, an architectural system is commonly described on different levels. Functional
architectures describe the high-level functions of a system. Logical architectures describe the logical
components of a system and how data is exchanged between them. You can use allocations to
establish relationships from functional components to logical components and to indicate deployment
strategies.

• An allocation establishes a directed relationship from architectural elements — components,
ports, and connectors — in one model to architectural elements in another model.

Resource-based allocation allows you to allocate functional architectural elements to logical
architectural elements and logical architectural elements to physical architectural elements.

• An allocation scenario contains a set of allocations between a source and a target model.

Allocate between model elements in an allocation scenario. The default allocation scenario is
called Scenario 1.

• An allocation set consists of one or more allocation scenarios that describe various allocations
between a source and a target model.

Create an allocation set with allocation scenarios in the Allocation Editor. Allocation sets are
saved as MLDATX files.

To create allocations programmatically, see “Create and Manage Allocations Programmatically” on
page 8-8.

Create and Manage Allocations Interactively Using Tire Pressure
Monitoring System

This example uses the Tire Pressure Monitoring System (TPMS) project. To open the project, use this
command.

scExampleTirePressureMonitorSystem

Create Allocations between Two Models

You can create allocations between a functional architecture and a logical architecture of the TPMS
to represent directed relationships between components, ports, and connectors.

1. Open the functional architecture model, which is the source model for allocations.

systemcomposer.openModel("TPMS_FunctionalArchitecture");

2. To create an allocation set for these models, launch the Allocation Editor by navigating to
Modeling > Allocation Editor from the toolstrip.

The Allocation Editor has three parts: the toolstrip, the browser pane, and the allocation matrix.

• Use the toolstrip to create and manage allocation sets.

8 Allocate Architecture Models

8-2

• Use the Allocation Set Browser pane to browse and open existing allocation sets.
• Use the allocation matrix to specify allocations between the source model elements in the first

column and target model elements in the first row. You can create allocations programmatically or
by double-clicking a cell in the matrix.

3. Click New Allocation Set to create a new allocation set between two models and set the name. In
this example, TPMS_FunctionalArchitecture.slx is the source model, and
TPMS_LogicalArchitecture.slx is the target model.

4. To create an allocation between two elements of the same type from the source model to the target
model, double-click the corresponding cell in the allocation matrix. Double-click the cell for the
Report Low Tire Pressure component on the souce model and the TPMS Reporting System
component on the target model.

 Create and Manage Allocations Interactively

8-3

5. To show allocations on model elements for the source model TPMS_FunctionalArchitecture,
on the toolstrip, navigate to Modeling > Allocation Editor > Show Allocations. Select the Report
Low Tire Pressure source component and click the allocated to symbol. You will see the full path
of the target component.

6. Click the target component to navigate to it on the target model.

8 Allocate Architecture Models

8-4

 Create and Manage Allocations Interactively

8-5

7. Return to the source model TPMS_FunctionalArchitecture and create a new allocation from a
model element. Right-click the Calculate if pressure is low component, and from the tooltip
select Allocations, then select Select as allocation source.

8. On the target model TPMS_LogicalArchitecture, right-click the TPMS Reporting System
component, From the tooltip, select Allocations. Then, select Allocate to selected element.
Choose the active allocation scenario.

9. To show allocations on model elements for the source model TPMS_LogicalArchitecture, on
the toolstrip, navigate to Modeling > Allocation Editor > Show Allocations. Click the allocated
from symbol on the TPMS Reporting System component to view the full path of the two allocated-
from components. Click the delete icon on either component to delete the allocation and deallocate
the components. Click Confirm delete to continue deleting.

8 Allocate Architecture Models

8-6

See Also
systemcomposer.allocation.AllocationScenario |
systemcomposer.allocation.AllocationSet | editor | getScenario | allocate |
synchronizeChanges

More About
• “Create and Manage Allocations Programmatically” on page 8-8
• “Manage Requirements” on page 2-8
• “Analyze Architecture” on page 9-2
• “Allocate Architectures in Tire Pressure Monitoring System” on page 8-10
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Create and Manage Allocations Interactively

8-7

Create and Manage Allocations Programmatically
This example shows how to create and manage System Composer allocations using the Allocation
Editor and programmatic interfaces.

• An allocation establishes a directed relationship from architectural elements — components,
ports, and connectors — in one model to architectural elements in another model.

Resource-based allocation allows you to allocate functional architectural elements to logical
architectural elements and logical architectural elements to physical architectural elements.

• An allocation scenario contains a set of allocations between a source and a target model.

Allocate between model elements in an allocation scenario. The default allocation scenario is
called Scenario 1.

• An allocation set consists of one or more allocation scenarios that describe various allocations
between a source and a target model.

Create an allocation set with allocation scenarios in the Allocation Editor. Allocation sets are
saved as MLDATX files.

To create allocations interactively, see “Create and Manage Allocations Interactively” on page 8-2.

Create and Manage Allocations Using Tire Pressure Monitoring System

This example uses the Tire Pressure Monitoring System (TPMS) project. To open the project, use this
command.

scExampleTirePressureMonitorSystem

Create New Allocation Set

You can create an allocation set using the Allocation Editor. In this example,
TPMS_FunctionalArchitecture.slx is the source model and
TPMS_LogicalArchitecture.slx is the target model.

To create an allocation set for these models, use this command.

allocSet = systemcomposer.allocation.createAllocationSet(...
 'FunctionalToLogical', ...% Name of the allocation set
 'TPMS_FunctionalArchitecture', ... % Source model
 'TPMS_LogicalArchitecture' ... % Target model
);

To see the allocation set, open the Allocation Editor by using this command.

systemcomposer.allocation.editor

Create Allocations between Two Models

This example shows how to programmatically create allocations between two models in the TPMS
project.

Get handles to the reporting functions in the functional architecture model.

8 Allocate Architecture Models

8-8

functionalArch = systemcomposer.loadModel('TPMS_FunctionalArchitecture');
reportLevels = functionalArch.lookup('Path','TPMS_FunctionalArchitecture/Report Tire Pressure Levels');
reportLow = functionalArch.lookup('Path','TPMS_FunctionalArchitecture/Report Low Tire Pressure');

Get the handle to the TPMS reporting system component in the logical architecture model.

logicalArch = systemcomposer.loadModel('TPMS_LogicalArchitecture');
reportingSystem = logicalArch.lookup('Path','TPMS_LogicalArchitecture/TPMS Reporting System');

Create the allocations in the default scenario that is created.

defaultScenario = allocSet.getScenario('Scenario 1');
defaultScenario.allocate(reportLevels,reportingSystem);
defaultScenario.allocate(reportLow,reportingSystem);

Optionally, you can delete the allocation between reporting low tire pressure and the reporting
system.

% defaultScenario.deallocate(reportLow,reportingSystem);

See Also
systemcomposer.allocation.AllocationScenario |
systemcomposer.allocation.AllocationSet | editor | getScenario | allocate |
synchronizeChanges

More About
• “Create and Manage Allocations Interactively” on page 8-2
• “Manage Requirements” on page 2-8
• “Analyze Architecture” on page 9-2
• “Allocate Architectures in Tire Pressure Monitoring System” on page 8-10
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

 Create and Manage Allocations Programmatically

8-9

Allocate Architectures in Tire Pressure Monitoring System

Use allocations to analyze a tire pressure monitoring system.

Overview

In systems engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions.

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation.

3 Platform Architecture — Describes the physical hardware needed for the system at a high level.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information about each architectural layer and makes it accessible to the
others.

Use this command to open the project.

 scExampleTirePressureMonitorSystem

Open the FunctionalAllocation.mldatx file, which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture in the Allocation Editor. The
elements of TPMS_FunctionalArchitecture are displayed in the first column. The elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

8 Allocate Architecture Models

8-10

The arrows display allocated components in the model. You can observe allocations for each element
in the model hierarchy.

The rest of the example shows how to use this allocation information to further analyze the model.

Functional to Logical Allocation and Coverage Analysis

This section shows how to perform coverage analysis to verify that all functions have been allocated.
This process requires using the allocation information specified between the functional and logical
architectures.

To start the analysis, load the allocation set.

 allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

 import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

All functions are allocated

 Allocate Architectures in Tire Pressure Monitoring System

8-11

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This section shows how to identify which functions will be provided by which suppliers using the
specified allocations. Since suppliers will be delivering these components to the system integrator,
the supplier information is stored in the logical model.

 suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
 functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
 numFunNames = length(allFunctions);
 numSuppliers = length(suppliers);
 allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
 allocTable.Properties.VariableNames = suppliers;
 allocTable.Properties.RowNames = functionNames;
 for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

 end

The table shows which suppliers are responsible for the corresponding functions.

 allocTable

allocTable=8×4 table
 Supplier A Supplier B Supplier C Supplier D
 __________ __________ __________ __________

 Measure temprature of tire 0 0 0 1
 Measure rotations 0 1 0 0
 Calculate Tire Pressure 0 1 0 0
 Report Tire Pressure Levels 1 0 0 0
 Measure pressure on tire 0 0 1 0
 Measure Tire Pressure 0 0 0 0
 Report Low Tire Pressure 1 0 0 0
 Calculate if pressure is low 1 0 0 0

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit (ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

 platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

 softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

 frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');

8 Allocate Architecture Models

8-12

 rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

 scenario1 = softwareDeployment.getScenario('Scenario 1');
 scenario2 = softwareDeployment.getScenario('Scenario 2');
 frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
 rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

 frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
 frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
 rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
 rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

 frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
 frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;
 rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
 rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

 softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

softwareDeploymentTable=6×2 table
 Scenario 1 Scenario 2
 __________ __________

 Front ECUMemory Used (MB) 110 90
 Front ECU Memory (MB) 100 100
 Front ECU Overloaded 1 0
 Rear ECU Memory Used (MB) 0 20
 Rear ECU Memory (MB) 100 100
 Rear ECU Overloaded 0 0

 function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)

For each component in the ECU, accumulate the binary size required for each allocated software
component.

 coreNames = {'Core1','Core2','Core3','Core4'};
 memoryUsed = 0;
 for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
 end

 Allocate Architectures in Tire Pressure Monitoring System

8-13

 end

See Also
getAllocatedTo | load | getScenario | getAllocatedFrom | synchronizeChanges |
getEvaluatedPropertyValue | systemcomposer.loadModel | find | getQualifiedName |
lookup

More About
• “Create and Manage Allocations Interactively” on page 8-2
• “Create and Manage Allocations Programmatically” on page 8-8
• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9
• “Organize System Composer Files in Projects” on page 12-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

8 Allocate Architecture Models

8-14

Systems Engineering Approach for SoC Applications

This example shows how to design a sample signal detector application on a System on Chip (SoC)
platform using a systems engineering approach. The workflow in this example maps the application
functions onto the selected hardware architecture.

The signal detector application continuously processes the signal data and classifies the signal as
either high or low frequency. The signal cannot change between high- and low-frequency classes
faster than 1 ms. The signal is sampled at the rate of 10 MHz.

Functional Architecture

Define the functional architecture of the application. At this stage, the implementation of the
application components is not known. You can use the System Composer™ software to capture the
functional architecture.

This model represents the functional architecture with its main software components and their
connections.

systemcomposer.openModel('soc_signaldetector_func');

The functional architecture of the application consists of these top-level components:

1 Generate Signal
2 Preprocess Signal
3 Classify Signal
4 Activate LEDs

Hardware Architecture

Select the hardware architecture. Due to the anticipated application complexity, choose an SoC
device. The chosen SoC device has a hardware programmable logic (FPGA) core and an embedded
processor (ARM) core. You can use the System Composer software to capture the details of the
hardware architecture.

 Systems Engineering Approach for SoC Applications

8-15

This model represents the hardware architecture with its main hardware components and their
connections.

systemcomposer.openModel('soc_signaldetector_arch');

Behavioral Modeling

If the implementations for functional components are available, you can add them to the functional
architecture as behaviors. In System Composer, for each functional component, you can link the
implementation behaviors as Simulink® models. To review the component implementations, double-
click each component in the functional architecture model.

After you define the behavior of each component, you can simulate the behavior of the entire
application and verify its functional correctness. Select Run in the functional architecture model.
Then, analyze the signals classification results in the Simulation Data Inspector. To change the
signal type, select the Generate Signal component and then select the Manual Switch block.
Confirm that the source signal is classified correctly.

Allocation of Functional and Hardware Elements

After refining the functional and hardware architecture, allocate different functional components to
different hardware elements to meet desired system performance benchmarks. In this case, some
functional components are constrained as to where in the hardware architecture they can be
implemented. You must implement the Generate Signal and Activate LEDs components on the
FPGA core in the chosen hardware architecture due to input output (I/O) connections. Comparatively,
you can implement the Preprocess Signal and Classify Signal components on either the
FPGA or on the processor core.

 Component Constraint
 Generate Signal FPGA

8 Allocate Architecture Models

8-16

 Preprocess Signal -
 Classify Signal -
 Activate LEDs FPGA

This example shows how to use three possible scenarios for allocating the application functional
architecture to the hardware architecture.

• The FPGA handles preprocessing and classification.
• The FPGA handles preprocessing and the processor handles classification.
• The processor handles preprocessing and classification.

System Composer captures these scenarios as Scenario 1, Scenario 2, and Scenario 3 using
the Allocation Editor.

allocSet = systemcomposer.allocation.load('soc_signaldetector_allocation');
systemcomposer.allocation.editor

Choosing an allocation scenario requires finding an implementation that optimally meets the
application requirements. Often you can find this implementation via static analysis without detailed
simulation. In this example, use static analysis to analyze the computational costs of implementing
different functional components on the processor and on the FPGA.

Implementation Cost

The implementation cost of a component depends on the required computation operations. To
determine the implementation costs, consider these typical approaches.

• Component implementation is not available: Obtain the computational cost from the available
reference implementations.

• The implementation and the hardware are available: Measure or profile the implementation cost
on the candidate hardware.

• The implementation is available, but the hardware is not: Estimate the implementation cost by
using the SoC Blockset™ algorithm analyzer function socAlgorithmAnalyzerReport.

 Systems Engineering Approach for SoC Applications

8-17

The socModelAnalyzer function estimates the number of operations in a Simulink model and
generates an algorithm analyzer report. To get the number of operations that a model executes to
then analyze the implementation cost on the processor, use the dynamic analysis function option. To
get the number of operators an algorithm requires to then analyze the implementation cost on the
FPGA, use the static analysis function option. For an example on how to use socModelAnalyzer, see
this sample function.

soc_signaldetector_costanalysis

*** Component: 'Preprocess Signal'
 ADD(+) MUL(*)
 ______ ______

 FPGA Implementation 15 16
 Processor Implementation 15300 16320

*** Component: 'Classify Signal'
 ADD(+) MUL(*)
 ______ ______

 FPGA Implementation 32 18
 Processor Implementation 32640 18360

The implementation costs for each functional component obtained in this code are entered in the
corresponding stereotypes in the functional architecture. To verify the values, select each component
in the functional architecture model and use the Property Inspector.

To learn more about socModelAnalyzer, see the “Compare FIR Filter Implementations Using
socModelAnalyzer” (SoC Blockset) example. This example shows how to analyze the computational
complexity of different implementations of a Simulink algorithm.

Allocation Choice

You can use the number of operators or operations that are required for implementing the application
functional components to decide how to allocate the functional components to the hardware
components. Analyze the candidate allocations by comparing the implementation cost against the
available resources of the FPGA and the processor. This example uses sample values in the FPGA and
the processor components in the hardware architecture model for the available computation
resources. Verify the values by using the Property Inspector.

Typically, the analysis does not use the number of operators or operations directly. Rather, the
number of operators or operations are multiplied by the cost of each operator or operation first. The
cost of the operator or operations is hardware dependent. Determining such costs is beyond the
scope of this example.

For an example on how to use the cost models, use this function. Observe that we require the
capacity of the FPGA and the processor be greater than the estimated implementation cost as well as
that the processor headroom be between 60 and 90 %.

soc_signaldetector_partitionanalysis

 FPGA DSPs Used (out of 900) FPGA LUT Used (out of 218600) Processor Instructions/s (out of 1000000000) Processor Headroom (%) Feasible
 ___________________________ _____________________________ __ ______________________ ________

8 Allocate Architecture Models

8-18

 Scenario 1 34 576 0 100 0
 Scenario 2 16 192 326400000 100 0
 Scenario 3 0 0 489600000 100 0

Based on the results Scenario 2 is feasible.

Data Path Design Between FPGA and Processor

The FPGA processes data sample-by-sample, and the processor processes frame-by-frame. Because
the duration of a processor task can vary, to prevent data loss, a queue is needed to hold the data
between the FPGA and processor. In this case you must set these parameters that are related to the
queue: frame size, number of frame buffers, and FIFO size (that is, the number of samples in the
FIFO). Also, in embedded applications, the task durations can vary between different task instances
(for example, due to different code execution paths or due to variations in OS switching time). As a
result, data might be dropped in the memory channel. The “Streaming Data from Hardware to
Software” (SoC Blockset) example shows a systematic approach to choosing the previously mentioned
parameters that satisfy the application requirements.

See Also
socAlgorithmAnalyzerReport | socModelAnalyzer | systemcomposer.allocation.editor

More About
• “Using the Algorithm Analyzer Report” (SoC Blockset)
• “Create and Manage Allocations Programmatically” on page 8-8
• “Analyze Architecture” on page 9-2
• “Compose Architectures Visually” on page 1-2
• “Implement Component Behavior Using Simulink” on page 7-2

 Systems Engineering Approach for SoC Applications

8-19

Analyze Architecture Model

• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9
• “Battery Sizing and Automotive Electrical System Analysis” on page 9-14
• “Calculate Endurance Using Quadcopter Architectural Design” on page 9-16
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 9-23

9

Analyze Architecture

Perform static analysis on a System Composer architecture to evaluate characteristics of the system.

Analysis is a method for quantitatively evaluating an architecture for certain characteristics. Static
analysis analyzes the structure of the system. Static analysis uses an analysis function and parametric
values of properties captured in the system model.

Use analyses to calculate overall reliability, mass roll-up, performance, or thermal characteristics of a
system, or to perform a SWaP analysis.

Write static analyses based on element properties to perform data-driven trade studies and verify
system requirements. Consider an electromechanical system where there is a trade-off between cost
and weight, and lighter components tend to cost more. The decision process involves analyzing the
overall cost and weight of the system based on the properties of its elements, and iterating on the
properties to arrive at a solution that is acceptable both from the cost and weight perspective.

The analysis workflow consists of these steps:

1 Define a profile containing a set of stereotypes that describe some analyzable properties (for
example, cost and weight).

2 Apply the profile to an architecture model and add stereotypes from that profile to elements of
the model (components, ports, or connectors).

3 Specify values for the properties on those elements.
4 Write an analysis function to compute values necessary for the trade study. This is a static

constraint solver for parametrics and values of related properties captured in the system model.
5 Create an instance of the architecture model, which is a tree of elements, corresponding to the

model hierarchy with all shared architectures expanded and a variant configuration applied. Use
the Instantiate Architecture Model tool.

6 Run the analysis function and then see analysis calculations and results in the Analysis Viewer
tool.

Set Properties for Analysis
This example shows how to enable analysis by adding stereotypes to model elements and setting
property values. The model provides the basis to analyze the trade-off between total cost and weight
of the components in a simple architecture model of a robot system.

Open the Model

Open the systemWithProps architecture model.

9 Analyze Architecture Model

9-2

Import Profile

Enable analysis of properties by first importing a profile. In the toolstrip, navigate to Modeling >
Profiles > Import and browse to the profile to import it.

Apply Stereotypes to Model Elements

Apply stereotypes to all model elements that are part of the analysis. Use the Apply Stereotypes
dialog to apply stereotypes to all elements of a certain type. Navigate to Modeling > Apply
Stereotypes. In Apply Stereotypes, from Apply stereotype(s) to, select Components. From Scope,
select This layer. For more information, see “Use Apply Stereotypes Dialog to Batch Apply
Stereotypes” on page 5-13.

Tip Make sure you apply the stereotype to the top-level component if a cumulative value is to be
computed.

Set Property Values

Set property values for each model element in the Property Inspector. To open the Property
Inspector, navigate to Modeling > Property Inspector.

 Analyze Architecture

9-3

1 Select the model element.
2 In the Property Inspector, expand the stereotype name and type values for properties.

Create a Model Instance for Analysis

Create an instance of the architecture model that you can use for analysis.

An instance is an occurrence of an architecture model element at a given point in time.

An instance freezes the active variant or model reference of the component in the instance model.

An instance model is a collection of instances.

You can update an instance model with changes to a model, but the instance model will not update
with changes in active variants or model references. You can use an instance model, saved in a MAT
file, of a System Composer architecture model for analysis.

Navigate to Modeling > Analysis Model to open the Instantiate Architecture Model tool. Specify
all the parameters required to create and view an analysis model.

9 Analyze Architecture Model

9-4

The Select Stereotypes tree lists the stereotypes of all profiles that have been loaded in the current
session and allows you to select those whose properties should be available in the instance model.
You can browse for an analysis function, create a new analysis function, or skip analysis at this point.
If the analysis function requires inputs other than elements in the model, such as an exchange rate to
compute cost, enter it in Function arguments. Select a mode for iterating through model elements,
for example, Bottom-up to move from the leaves of the tree to the root. Strict Mode ensures
instances get properties only if the corresponding element in the composition model has the
stereotype applied.

To view the instance, click Instantiate and launch the Analysis Viewer tool.

The Analysis Viewer shows all elements in the first column. The other columns show properties for all
stereotypes chosen for the current instance. If a property is not part of a stereotype applied to an
element, that field is greyed out. You can use the Filter button to hide properties for certain
stereotypes. When you select an element, Instance Properties shows the stereotypes and property
values of the element. You can save an instance in a MAT-file and open it again in the Analysis Viewer.

 Analyze Architecture

9-5

If you make changes in the model while an instance is open, you can synchronize the instance with
the model. Update pushes the changes from the instance to the model. Refresh pulls changes to the
instance from the model. Unsynchronized changes are shown in a different color. Selecting a single
element enables the option to Update Element.

Write Analysis Function

Write a function to analyze the architecture model using instances. An analysis function quantitatively
evaluates an architecture for certain characteristics.

An analysis function is a MATLAB function that computes values necessary to evaluate the
architecture using the properties of each element in the model instance.

Use an analysis function to calculate the result of an analysis.

For more information, see “Analysis Function Constructs” on page 9-9.

You can add an analysis function as you set up the analysis instance model. After you select the

stereotypes of interest, create a template function by clicking next to the Analysis function
field. The generated M-file includes the code to obtain all property values from all stereotypes that
are subject to analysis. The analysis function operates on a single element — aggregate values are
generated by iterating this function over all elements in the model when you run the analysis using
the Analysis Viewer tool.
function systemWithProps_1(instance,varargin)

if instance.isComponent() && ~isempty(instance.Components)...
 && instance.hasValue('SystemProfile.PhysicalElement.unitCost')
 sysComponent_unitPrice = 0;
 for child = instance.Components
 if child.hasValue('SystemProfile.PhysicalElement.unitCost')
 comp_price = child.getValue('SystemProfile.PhysicalElement.unitCost');
 sysComponent_unitPrice = sysComponent_unitPrice + comp_price;
 end
 end
 instance.setValue('SystemProfile.PhysicalElement.unitCost',sysComponent_unitPrice);
end

In the generated file, instance is the instance of the element on which the analysis function runs
currently. You can perform these operations for analysis:

• Access a property of the instance:
instance.getValue("<profile>.<stereotype>.<property>")

9 Analyze Architecture Model

9-6

• Set a property of an instance:
instance.setValue("<profile>.<stereotype>.<property>",value)

• Access the subcomponents of a component: instance.Components
• Access the connectors in component: instance.Connectors

The getValue function generates an error if the property does not exist. You can use hasValue to
query whether elements in the model have the properties before getting the value.

As an example, this code computes the weight of a component as a sum of the weights of its
subcomponents.
if instance.isComponent() && ~isempty(instance.Components)...
 && instance.hasValue('SystemProfile.PhysicalElement.weight')
 weight = 0;
 for child = instance.Components
 if child.hasValue('SystemProfile.PhysicalElement.weight')
 subcomp_weight = child.getValue('SystemProfile.PhysicalElement.weight');
 weight = weight + subcomp_weight;
 end
 end
 instance.setValue('SystemProfile.PhysicalElement.weight',weight);
end

Once the analysis function is complete, add it to the analysis under the Analysis function box. An
analysis function can take additional input arguments, for example, a conversion constant if the
weights are in different units in different stereotypes. When this code runs for all components
recursively, starting from the deepest components in the hierarchy to the top level, the overall weight
of the system is assigned to the weight property of the top-level component.

Run Analysis Function
Run an analysis function using the Analysis Viewer.

1 Select or change the analysis function using the Analyze menu.
2 Select the iteration method.

• Pre-order — Start from the top level, move to a child component, and process the
subcomponents of that component recursively before moving to a sibling component.

• Top-Down — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Post-order — Start from components with no subcomponents, process each sibling, and
then move to parent.

• Bottom-up — Like post-order, but process all subcomponents at the same depth before
moving to their parents.

The iteration method depends on what kind of analysis is to be run. For example, for an analysis
where the component weight is the sum of the weights of its components, you must make sure
the subcomponent weights are computed first, so the iteration method must be bottom-up.

3 Click the Analyze button.

System Composer runs the analysis function over each model element and computes results. The
computed properties are highlighted yellow in the Analysis Viewer.

 Analyze Architecture

9-7

Here, the total cost of the system is 5100 dollars and the total weight is 55 kg.

See Also
systemcomposer.analysis.Instance | iterate | instantiate | deleteInstance | update |
refresh | save | loadInstance | lookup | getValue | setValue | hasValue

More About
• “Define Profiles and Stereotypes” on page 5-2
• “Organize System Composer Files in Projects” on page 12-2
• “Analysis Function Constructs” on page 9-9
• “Calculate Endurance Using Quadcopter Architectural Design” on page 9-16
• “Battery Sizing and Automotive Electrical System Analysis” on page 9-14

9 Analyze Architecture Model

9-8

Analysis Function Constructs
Analyze architectures to choose between design alternatives or improve existing designs. You can use
analysis functions with System Composer architecture models to perform systems analysis and trade
studies.

An analysis function is a MATLAB function that computes values necessary to evaluate the
architecture using the properties of each element in the model instance.

Use an analysis function to calculate the result of an analysis and determine the optimal parameters
to use for behavior models to simulate the architectural system.

Type Section
Roll-up analysis “Roll-Up Analysis for Quadcopter Design” on page 9-9
Class-based analysis “Class-Based Analysis for Battery Sizing” on page 9-10
Allocation-based analysis “Allocation-Based Analysis for Tire Pressure Monitoring” on page

9-11
Remaining useful life (RUL)
analysis

“Remaining Useful Life Analysis for Mobile Robot Design” on page
9-11

Variant analysis “Variant Analysis for Insulin Infusion Pump Design” on page 9-12

For more information on analysis functions and architecture instances, see “Analyze Architecture” on
page 9-2.

Roll-Up Analysis for Quadcopter Design
Use a roll-up analysis function to calculate a total or average of model element property values.
Assign properties to model elements using stereotypes. For more information, see “Define Profiles
and Stereotypes” on page 5-2.

In this example, the analysis function systemWithProps_1calculates the total cost of all
components in the model and is compatible with the Analysis Viewer tool.
function systemWithProps_1(instance,varargin)

if instance.isComponent() && ~isempty(instance.Components)...
 && instance.hasValue('SystemProfile.PhysicalElement.unitCost')
 sysComponent_unitPrice = 0;
 for child = instance.Components
 if child.hasValue('SystemProfile.PhysicalElement.unitCost')
 comp_price = child.getValue('SystemProfile.PhysicalElement.unitCost');
 sysComponent_unitPrice = sysComponent_unitPrice + comp_price;
 end
 end
 instance.setValue('SystemProfile.PhysicalElement.unitCost',sysComponent_unitPrice);
end

This analysis function iterates through an architecture instance. First, the
sysComponent_unitPrice variable is set to zero so that every time the analysis is run, sums do not
accumulate indefinitely. Each component instance is checked for a unitCost property value. All
unitCost property values are summed up and saved in the sysComponent_unitPrice variable.
Finally, the unitCost property of the current component instance is updated with the value of
sysComponent_unitPrice. For more information, see “Write Analysis Function” on page 9-6.

 Analysis Function Constructs

9-9

In this example, a section of the analysis function calculateEndurance calculates endurance for a
quadcopter using component instance properties. The calculated endurance value is then set for the
architecture instance of the quadcopter with the setValue function.
if payloadBatteryCapacity == 0
 totalPower = powerConsumption + hoverPower/efficiency;
 endurance = (batteryCapacity/1000)/(totalPower/voltage)*60;
else
 payloadEndurance = (payloadBatteryCapacity/1000)/(powerConsumption/voltage)*60;
 flightEndurance = (batteryCapacity/1000)/((hoverPower/efficiency)/voltage)*60;
 if flightEndurance < payloadEndurance
 endurance = flightEndurance;
 else
 endurance = payloadEndurance;
 warning('Endurance is limited by payload electronics.')
 end
end
instance.setValue('AirVehicle.Endurance',endurance)

For more information and for the supporting files, see “Calculate Endurance Using Quadcopter
Architectural Design” on page 9-16.

Class-Based Analysis for Battery Sizing
Use MATLAB classes for an analysis function to iterate over an object, or instantiation of the class.

In this example, the class called computeBatterySizing involves properties and methods useful for
the analysis function computeLoad.
classdef computeBatterySizing < handle

 properties
 totalCrankingInrushCurrent;
 totalCrankingCurrent;
 totalAccesoriesCurrent;
 totalKeyOffLoad;
 batteryCCA;
 batteryCapacity;
 puekertcoefficient;
 end

 methods
 function obj = computeBatterySizing(obj)
 obj.totalCrankingInrushCurrent = 0;
 obj.totalCrankingCurrent = 0;
 obj.totalAccesoriesCurrent = 0;
 obj.totalKeyOffLoad = 0;
 obj.batteryCCA = 0;
 obj.batteryCapacity = 0;
 obj.puekertcoefficient = 1.2;
 end

 function obj = displayResults(obj)
 tempNumdaysToDischarge = (((obj.batteryCapacity/obj.puekertcoefficient)*0.3)/(obj.totalKeyOffLoad*1e-3))/24;
 disp("Total KeyOffLoad: " + num2str(obj.totalKeyOffLoad) + " mA");
 disp("Number of days required for KeyOffLoad to discharge 30% of battery: " + ...
 num2str(tempNumdaysToDischarge) + ".");
 disp("Total CrankingInRush current: " + num2str(obj.totalCrankingInrushCurrent) + " A");
 disp("Total Cranking current: " + num2str(obj.totalCrankingCurrent) + " A");

 if(obj.totalCrankingCurrent > obj.batteryCCA)
 disp("The Cold Cranking Amps of the specified battery is not sufficient to start the car 0 F.")
 else
 disp("CCA of the specified battery is sufficient to start the car at 0 F.")
 end
 end
 end
end

For more information and for the supporting files, see “Battery Sizing and Automotive Electrical
System Analysis” on page 9-14.

9 Analyze Architecture Model

9-10

Allocation-Based Analysis for Tire Pressure Monitoring
A functional-to-logical allocation matrix allocates components in a functional architecture to
components in a logical architecture. Coverage analysis is the most basic form of analysis to
determine whether all elements have been allocated.

First, open the project for this example. Then, load the allocation set and collect the scenarios.

scExampleTirePressureMonitorSystem
allocSet = systemcomposer.allocation.load('FunctionalAllocation');
 scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.
import systemcomposer.query.*;
 [~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
 unAllocatedFunctions = [];
 for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions = [unAllocatedFunctions allFunctions(i)];
 end
 end

 if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
 else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
 end

All functions are allocated

The output verifies that all functions are allocated.

For more information and for the supporting files, see “Allocate Architectures in Tire Pressure
Monitoring System” on page 8-10.

Remaining Useful Life Analysis for Mobile Robot Design
Remaining useful life (RUL) analysis estimates the time remaining before different subsystems fail.
The goal is to anticipate maintenance and thus minimize system disruptions.

In this example, the analysis function scMobileRobotAnalysis is compatible with the Analysis
Viewer tool.
function scMobileRobotAnalysis(instance,varargin)

 ExpectedYearsBeforeFirstMaintenance = 2;

 if ~instance.isArchitecture()
 if instance.hasValue("HardwareBaseStereotype.Life")
 Life = instance.getValue("HardwareBaseStereotype.Life");
 UsagePerDay = instance.getValue("HardwareBaseStereotype.UsagePerDay");
 UsagePerYear = instance.getValue("HardwareBaseStereotype.UsagePerYear");
 WillSurvive = Life > UsagePerDay * UsagePerYear * ExpectedYearsBeforeFirstMaintenance;
 instance.setValue("HardwareBaseStereotype.ExceedExpectedMaintenance", WillSurvive);
 end
 end
end

After running this analysis function, you can optimize the desired first expected maintenance time in
years. Each component that exceeds the expected maintenance time, in this case set to two years, is
flagged with a check box. Unchecked components should be optimized or replaced with longer-lasting
parts.

 Analysis Function Constructs

9-11

For more information and for the supporting files, see “Define Stereotypes and Perform Analysis” on
page 5-32.

Variant Analysis for Insulin Infusion Pump Design
Use variant analysis to choose one optimal combination of variants by comparing them with a
calculated metric.

In this example, the analysis function OutcomeAnalysis is used to determine the best configuration
for an insulin infusion pump. This standalone analysis function does not involve the Analysis Viewer
tool. Instead, the analysis function uses the iterate function and can be executed directly from the
MATLAB Command Window.

The OutcomeAnalysis function first gathers all variant choice components named Pump and
BGSensor.

function outcomes = OutcomeAnalysis()

modelname = 'InsulinInfusionPumpSystem';

therapyModel = systemcomposer.openModel(modelname);
components = therapyModel.Architecture.Components;
for idx = 1:numel(components)
 if strcmp(components(idx).Name,'Pump')
 pumps = components(idx).getChoices;
 pumpNames = {};
 for jdx = 1:numel(pumps)
 pumpNames{end+1} = pumps(jdx).Name;
 end
 elseif strcmp(components(idx).Name,'BGSensor')
 sensors = components(idx).getChoices;
 sensorNames = {};
 for jdx = 1:numel(sensors)
 sensorNames{end+1} = sensors(jdx).Name;
 end
 end
end

The analysis function then collects all variant combinations to iterate over.

config.Sensor = sensorNames{1};
config.Pump = pumpNames{1};
configs = {};

for idx = 1:numel(sensorNames)
 for jdx = 1:numel(pumpNames)
 config.Sensor = sensorNames{idx};
 config.Pump = pumpNames{jdx};
 configs{end+1} = config;
 end
end

The analysis function activates the variants one by one, iterates over the model properties, and
collects outcomes. To set variant combinations, OutcomeAnalysis uses the setVariants function.
To compute the outcomes, OutcomeAnalysis uses the computeOutcome function.

9 Analyze Architecture Model

9-12

outcomes = {};

for idx = 1:numel(configs)
 hOutcome = OutcomeContainer(configs{idx});
 therapyModel.iterate('Topdown',@setVariants,configs{idx});
 therapyModel.iterate('BottomUp',@computeOutcome,hOutcome);
 hOutcome.setWeights([1e-6 1 10 1 1000]');
 outcomes{end+1} = hOutcome;
end

Finally, the analysis function plots the net outcome to reveal the optimal design choice.
properties = {'Lower NRE','Higher Accuracy','Better Compliance',...
'Sooner To Market','Lower Operating Cost'};
plotMatrix = zeros(numel(outcomes), numel(properties));
plotStrings = {};
for idx = 1:numel(outcomes)
 plotStrings{idx} = [outcomes{idx}.Sensor '+' outcomes{idx}.Pump];
 plotMatrix(idx,1) = 1/(outcomes{idx}.NRE);
 plotMatrix(idx,2) = outcomes{idx}.Accuracy;
 plotMatrix(idx,3) = outcomes{idx}.Compliance;
 plotMatrix(idx,4) = 1/(outcomes{idx}.TimeToMarket);
 plotMatrix(idx,5) = 1/(outcomes{idx}.AnnualCost);
end

colmin = zeros(1,5);
colmax = max(plotMatrix);
normalizedMatrix = rescale(plotMatrix,'InputMin',colmin,'InputMax',colmax);

if exist('spider_plot') == 2
 fig = figure;
 spider_plot(normalizedMatrix,'AxesLabels',properties,'FillOption','on',...
 'FillTransparency',0.1,'AxesDisplay','one');

 title(sprintf('Trade Study Outcome'),...
 'FontSize', 14);
 legend(plotStrings, 'Location', 'eastoutside');
 pos = fig.Position;
 pos(2) = pos(2) - pos(4);
 pos(3) = 2*pos(3);
 pos(4) = 2*pos(4);
 fig.Position = pos;
else
 vals = sum(normalizedMatrix,2)/5;
 x_labels = categorical(plotStrings);
 h = bar(x_labels,vals);
 title('Net outcome');
 ax = h.Parent;
 ax.YLabel.String = 'Normalized units';
end

For more information and for the supporting files, see “Design Insulin Infusion Pump Using Model-
Based Systems Engineering” on page 9-23.

See Also
systemcomposer.analysis.Instance | iterate | instantiate | deleteInstance | update |
refresh | save | loadInstance | lookup | getValue | setValue | hasValue

More About
• “Define Profiles and Stereotypes” on page 5-2
• “Analyze Architecture” on page 9-2
• “Organize System Composer Files in Projects” on page 12-2

 Analysis Function Constructs

9-13

Battery Sizing and Automotive Electrical System Analysis

Overview

Model a typical automotive electrical system as an architectural model and run a primitive analysis.
The elements in the model can be broadly grouped as either a source or a load. Various properties of
the sources and loads are set as part of the stereotype. This example uses the iterate method of the
specification API to iterate through each element of the model and run analysis using the stereotype
properties.

Structure of Model

The generator charges the battery while the engine is running. The battery and the generator
support the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the
properties set on each component, the following analyses are performed:

• Total KeyOffLoad.
• Number of days required for KeyOffLoad to discharge 30% of the battery.
• Total CrankingInRush current.
• Total Cranking current.
• Ability of the battery to start the vehicle at 0°F based on the battery cold cranking amps (CCA).

The discharge time is computed based on Puekert coefficient (k), which describes the relationship
between the rate of discharge and the available capacity of the battery.

Load Model and Run Analysis

scExampleAutomotiveElectricalSystemAnalysis
archModel = systemcomposer.loadModel('scExampleAutomotiveElectricalSystemAnalysis');

Instantiate battery sizing class used by the analysis function to store analysis results.

objcomputeBatterySizing = computeBatterySizing;

Run the analysis using the iterator.

archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing)

Display analysis results.

objcomputeBatterySizing.displayResults

Total KeyOffLoad: 158.708 mA
Number of days required for KeyOffLoad to discharge 30% of battery: 55.789.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specified battery is sufficient to start the car at 0 F.

ans =
 computeBatterySizing with properties:

 totalCrankingInrushCurrent: 70
 totalCrankingCurrent: 104
 totalAccesoriesCurrent: 71.6667

9 Analyze Architecture Model

9-14

 totalKeyOffLoad: 158.7080
 batteryCCA: 500
 batteryCapacity: 850
 puekertcoefficient: 1.2000

Close Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

See Also
systemcomposer.analysis.Instance | iterate | instantiate | deleteInstance | update |
save | loadInstance | getValue | setValue | hasValue | lookup

More About
• “Analyze Architecture” on page 9-2
• “Analysis Function Constructs” on page 9-9
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20
• “Allocate Architectures in Tire Pressure Monitoring System” on page 8-10
• “Calculate Endurance Using Quadcopter Architectural Design” on page 9-16

 Battery Sizing and Automotive Electrical System Analysis

9-15

Calculate Endurance Using Quadcopter Architectural Design

This example shows you how to create the physical architecture of a quadcopter following a target
green ball using System Composer™ and Requirements Toolbox™ and following a model-based
systems engineering (MBSE) workflow. Start by defining requirements, then extend architectural
data using stereotypes and custom property values for model elements, and finally use analysis to
iteratively improve on the design.

Define Functional Requirements for Quadcopter Design

The first step in the MBSE methodology is to define requirements. The concept of operations, or
conops, define the overall idea of the system. You then derive functional requirements from conops
requirements and further define the logical and physical subsystems by linking requirements.

1. Load Simulink® customizations.

sl_refresh_customizations

2. Load the physical architecture model in memory to view its requirement links.

systemcomposer.loadModel("QuadArchPhysical");

3. Open the requirement sets.

• Concept of operations
• Functional requirements
• Logical requirements
• Physical requirements

slreq.open("conops");
slreq.open("FunctionalReqs_Quad");
slreq.open("LogicalReqs_Quad");
slreq.open("PhysicalReqs_Quad");

4. Open the Requirements Editor (Requirements Toolbox).

slreq.editor

Inspect the conops requirement Target Characteristics. The requirements under the
Decomposed by list represent the requirements contained in the top-level requirement. The
requirement Target Identification under the Derived from list represents requirements
derived from the conops requirement.

9 Analyze Architecture Model

9-16

To open the quadcopter physical architecture model, run this code.

systemcomposer.openModel("QuadArchPhysical");

Manage requirements and architecture together in the Requirements Manager from Requirements
Toolbox. Navigate to Apps > Requirements Manager. You are now in the Requirements perspective
in System Composer. In this perspective, you can see which requirements are associated with specific
components in the physical architecture.

 Calculate Endurance Using Quadcopter Architectural Design

9-17

Specify Functional Design Using Stereotypes and Properties

Stereotypes, defined on a profile, include properties to specify metadata on model elements to which
stereotypes are applied.

To open the Profile Editor tool, on the System Composer toolstrip, navigate to Modeling > Profile
Editor. Alternatively, run this command.

systemcomposer.profile.editor

9 Analyze Architecture Model

9-18

The AirVehicle stereotype applies to components and inherits from the base stereotype
HW_Implementation. Each property under the AirVehicle stereotype is specified by a data type
defined by Type, and some properties include an engineering unit defined by Unit. You can apply the
AirVehicle stereotype to components in the quadcopter physical architecture to elaborate on these
components with specific property values. Define these property values for the RPiCam_RadioComms
component in the Property Inspector.

 Calculate Endurance Using Quadcopter Architectural Design

9-19

Perform Roll-Up Analysis to Calculate Endurance for Quadcopter Design

To open the Instantiate Architecture Model tool, on the System Composer toolstrip, navigate to
Modeling > Analysis Model. Select all the stereotypes under the

QuadcopterPhysicalProperties profile. Click the open button, then open the analysis
function file calculateEndurance.m. Select Bottom-up for Iteration Order. Click Instantiate.

9 Analyze Architecture Model

9-20

In the Analysis Viewer tool, you can use an analysis function to calculate roll-up property values such
as BatteryCapacity, PayloadBatteryCapacity, PowerDraw, and TotalMass. The analysis
function also calculates the performance characteristics PowerDraw and Endurance. For more
information, see “Analysis Function Constructs” on page 9-9. Click Analyze to view the analysis
results highlighted in yellow.

 Calculate Endurance Using Quadcopter Architectural Design

9-21

The Endurance property for this particular configuration is calculated as approximately 3.825 using
this equation.

endurance =
batteryCapacity

1000
totalPower

voltage
* 60

You can change the variant configuration and run the analysis function again to calculate Endurance
and compare different proposed designs.

See Also
systemcomposer.profile.editor | slreq.editor | sl_refresh_customizations

More About
• “Analyze Architecture” on page 9-2
• “Compose Architectures Visually” on page 1-2
• “Analysis Function Constructs” on page 9-9
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20
• “Modeling System Architecture of Keyless Entry System” on page 11-25
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38

9 Analyze Architecture Model

9-22

Design Insulin Infusion Pump Using Model-Based Systems
Engineering

This example show you how to use a model-based systems engineering workflow to investigate
optimal insulin infusion pump design. Insulin pumps are medical devices used by people with
diabetes that mimic the human pancreas by delivering insulin continuously and delivering variable
amounts of insulin with food intake.

The purpose of an insulin pump wearable device is to keep the blood glucose level of the wearer near
a healthy set point by infusing insulin as needed and in response to food intake. This example shows a
proposed insulin infusion pump system with two sensor and three pump variants that represent
alternate design choices.

Begin by determining system requirements, then create detailed design models with code generation
and verification tests. Finally, simulate the system architecture model that meets the evolving
requirements.

Insulin Pump System Architecture Model

This figure shows the System Composer™ architecture model for the insulin pump system. This
example uses Stateflow® blocks. If you do not have a Stateflow license, you can open and simulate
the model but can only make basic changes, such as modifying block parameters.

systemcomposer.openModel("InsulinInfusionPumpSystem");

The BGSensor component measures the blood glucose level. The Controller component makes a
decision about insulin rate. The Pump component provides insulin to the body using the
InfusionSet. The Patient recieves the treatment. The BGMeter calibrates the BGSensor. Finally,
the HID (human interface device) component may be a mobile app on the phone for the patient to
communicate with the system. The HID provides information the the PatientDataServer
component, which sends analyses to the Clinician, Regulator, and Reimburser components.

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-23

System Requirements and Links

Use Requirements Toolbox™ to analyze the system requirements, further break them down into
subsystem requirements, and link derived requirements to architectural components that satisfy
them. A Requirements Toolbox license is required to link, trace, and manage requirements in System
Composer.

Manage requirements and architecture together in the Requirements Perspective from Requirements
Toolbox. Select Apps > Requirements Manager. To edit requirements, select Requirements >
Requirements Editor or enter these commands to open the Requirements Editor (Requirements
Toolbox).

slreq.open("Infusion_Pump_System");
slreq.open("Insulin_Pump_Controller_Software_Specification");
slreq.editor

9 Analyze Architecture Model

9-24

The requirements decomposition and analysis at this point represent these concerns:

• Accuracy of delivery
• Mitigations against over-infusion, which leads to dangerously low blood glucose levels
• Fault analysis to prevent negative outcomes, for example, when the battery is depleted or the

device runs out of medication

On the architecture model, select the requirements icon to see the requirements that are associated
with the component. For example, below are the requirements linked to the Pump component.

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-25

Conversely, select a requirement to see the highlighted component by which the requirement is
implemented. For example, the BGSensor component implements the Sense blood glucose
requirement.

9 Analyze Architecture Model

9-26

Outcome Analysis for Optimal Design Choice

Outcome analysis consists of a trade study where the goal is to maximize the business value of the
design options based on calculations that sum up different component properties with weighting
factors. Many are directly entered properties, such as non-recurring engineering (NRE) costs to
develop the component. Compliance score, however, is a derived property that is based on different
data for each type of component. These properties model the burden to an end user of the system.
The compliance score includes these considerations:

• Energy consumption
• Size and weight
• Accuracy
• Mean time between failures (MTBF)
• Sound level produced during operation
• Ease of use

Navigate to Modeling > Profiles > Profile Editor, or enter this command.

systemcomposer.profile.editor

A System Composer profile, defined in the Profile Editor, is composed of stereotypes with properties
defined. You can apply stereotypes to components in the model to assign specific property values to
each component.

The pump and sensor trade study includes these steps:

1 Collect all variant combinations.

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-27

2 Activate variants one by one to represent all the combinations.
3 Iterate over the model to calculate compliance and compute the outcome using the stored and

calculated parameters.
4 Collect outcomes and weight them using the same units.
5 Provide the optimized option.

A Variant Component block named BGSensor contains two different sensor variants representing
example sensors from different manufacturers.

The Variant Component block named Pump contains three different pumps in this example called
PeristalticPump, SyringePump, and PatchPump.

9 Analyze Architecture Model

9-28

To programmatically cycle between the different variant choice combinations, calculate compliance,
and monitor the outcome to determine the optimal design choice, run OutcomeAnalysis.m. For
more information on variant analysis, see “Analysis Function Constructs” on page 9-9.

run("OutcomeAnalysis.m")

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-29

The normalized outcome score is at a maximum for the SensorA + SyringePump combination. This
design choice is optimal for the insulin pump.

Controller Implementation Model

Implement the insulin infusion pump controller in Simulink®. The input ports in this implementation
include User input, with user metrics that the insulin pump reads, and Hardware status, with
information about the insulin pump. The block named ModeControl deteremines in which mode the
insulin pump must operate.

9 Analyze Architecture Model

9-30

The block named ModeControl contains a Stateflow chart with details on how to select the mode.

The three modes include:

• Alarm mode, where the system is be suspended, repaired, and restarted once clear
• Bolus delivery mode to deliver insulin quickly with food intake
• Basal delivery mode to deliver insulin over a longer period of time to keep glucose levels steady

throughout the day

After the mode is selected, this component behavior determines the insulin rate for the outport.

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-31

Verification and Validation Using Test Manager

You can use model-based design to verify architectural designs and system requirements. The
abstract architecture model and the detailed Simulink design model are connected with traceable
requirement links. This section requires a Simulink® Test™ license.

The Controller implementation model in Simulink demonstrates requirements traceability for the
Alarm handling requirement.

9 Analyze Architecture Model

9-32

Load and view the Test Manager (Simulink Test) using these commands.

sltest.testmanager.load("Controller_Tests.mldatx");
sltest.testmanager.view

The Alarm_Detection functional test verifies the Alarm handling requirement.

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-33

Click the icon to the right of the Harness box to open the test harness. In this example, the block
named Controller is isolated for unit testing using a test harness. For more information on creating
a test harness, see “Create Test Harnesses and Select Properties” (Simulink Test).

Double-click the Test Sequence block to view the steps in the test sequence. The steps define a
scenario to verify the functioning of the alarm system.

9 Analyze Architecture Model

9-34

To run this test, go back into the Test Manager (Simulink Test).

sltest.testmanager.view

Right-click the test Alarm_Detection in the Test Browser and select Run. In the Results and
Artifacts section, view your test results. A passing test indicates that the system requirement Alarm
handling is verified by the conditions defined in the Test Assessment Block:

• Whether the alarm disables insulin delivery when there is low battery, occlusion (line blockage), or
low medication (insulin)

• Whether the system restarts after the issue has passed

See Also
systemcomposer.profile.editor | slreq.editor | sltest.testmanager.view

 Design Insulin Infusion Pump Using Model-Based Systems Engineering

9-35

More About
• “Manage Requirements” on page 2-8
• “Compose Architectures Visually” on page 1-2
• “Analysis Function Constructs” on page 9-9
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20
• “Calculate Endurance Using Quadcopter Architectural Design” on page 9-16
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38

9 Analyze Architecture Model

9-36

Software Architectures

• “Author Software Architectures” on page 10-2
• “Simulate and Deploy Software Architectures” on page 10-8
• “Modeling Software Architecture of Throttle Position Control System” on page 10-14
• “Class Diagram View of Software Architectures” on page 10-20
• “Author and Extend Functions for Software Architectures” on page 10-24
• “Merge Message Lines Using Adapter Block” on page 10-32
• “Authoring Functions for Software Components of an Adaptive Cruise Control” on page 10-34
• “Author Service Interfaces for Client-Server Communication” on page 10-41
• “Service-Oriented Sensor Modeling” on page 10-45
• “Simulate Asynchronous Services for Vehicle Headlight Management” on page 10-53

10

Author Software Architectures
Software architectures in System Composer provide capabilities to author software architecture
models composed of software components, ports, and interfaces. Use System Composer to design
your software architecture model, simulate your design in the architecture level, and generate code.

Use software architectures to link your Simulink export-function, rate-based, or JMAAB models to
components in your architecture model to simulate and generate code.

Create New Software Architecture Model
The workflow for authoring software architecture models is similar to authoring system architectures.
Start with a blank software architecture template to model.

You can create a software architecture programmatically by using the function.
systemcomposer.createModel("mySoftwareArchitectureDesign","SoftwareArchitecture")

where mySoftwareArchitectureDesign is the name of the new model.

You can also use the provided template in the Simulink start page.

Select Software Architecture Model.

Use a System Composer Architecture Model to describe systems as a combination of structural
elements with underlying behavioral descriptions. Use a Software Architecture Model to easily
define the execution order of your functions from your components, simulate your design in the

10 Software Architectures

10-2

architecture level, and generate code by linking your Simulink export-function, rate-based, or JMAAB
models to components.

For more information about architecture models, see “Compose Architectures Visually” on page 1-2.

From a Simulink model or a System Composer architecture model, on the Simulation tab, select

New , and then select Architecture . Then, select Software Architecture Model.

System Composer opens a new empty software architecture model. Observe the icon on the upper
left corner that distinguishes the empty model from a system architecture.

When you model software architectures, you can:

• Use model-building and visualization tools provided by System Composer such as components,
connections, and ports. For more information, see “Compose Architectures Visually” on page 1-2.

• Define interfaces. For more information, see Interface Editor.
• Define profiles and stereotypes. For more information, see Profile Editor.
• Create custom views and sequence diagrams. For more information, see Architecture Views

Gallery.
• Use tools to write analysis. For more information, see Instantiate Architecture Model and

Analysis Viewer.
• Create allocations. For more information, see Allocation Editor.

 Author Software Architectures

10-3

• Define parameters. For more information, see Parameter Editor.
• Compare differences between two models. For more information, see Comparison Tool.

Build a Simple Software Architecture Model
1 Drag an empty component to the mySoftwareArchitectureDesign model.

2 Link this simple Simulink Export-Function model, export_model_software_architecture to
your component by right-clicking the component and selecting Link to Model. For more
information about building this Simulink model, see “Create an Export-Function Model”.

3 Connect component input port and output ports to architecture input ports and output ports.

10 Software Architectures

10-4

In this example, you start from a blank template and create a simple software architecture model. To
learn how to simulate a software architecture model and generate code, see “Simulate and Deploy
Software Architectures” on page 10-8.

Import and Export Software Architectures
You can import a software architecture model using the systemcomposer.importModel function.

archModel = systemcomposer.importModel(modelName,importStruct)

If the domain field of importStruct is "Software", the importModel function creates a new
software architecture based on the structure of the MATLAB tables.

To export a System Composer software architecture model, use the systemcomposer.exportModel
function.

exportedSet = systemcomposer.exportModel(modelName)

The exportModel function returns a structure containing MATLAB tables that contains
components, ports, connections, portInterfaces, requirementLinks, and a domain field
with value 'Software' to indicate that the exported architecture is a software architecture.

For more information on importing and exporting software architectures with functions, see “Import
and Export Functions of Software Architectures” on page 10-30.

Create Software Architecture from Architecture Model Component
You can also create a software architecture model from an existing component in a System Composer
architecture model.

To create a software architecture model from a component:

1 Select an existing component from your architecture model. In this example, we select
Component2.

 Author Software Architectures

10-5

2 To create a software architecture model from Component2, you can use any of these three
methods:

a Right-click the component and select Create Software Architecture Model.
b Select the component and, on the toolstrip, click Create Software Architecture Model.

c To create a software architecture programmatically, use the createArchitectureModel
function.

3 Observe the software architecture model icon in the upper left corner. The new software
architecture contains all elements from the component, including previously applied stereotypes.

10 Software Architectures

10-6

The following elements are not supported if you create a software architecture from an existing
component:

• A reference component that references a system architecture.
• A component with Stateflow chart behavior.
• Adapter blocks with applied interface conversions. “Interface Adapter” on page 3-16 conversions

are removed when you create a software architecture from an existing component.

See Also
systemcomposer.createModel | createArchitectureModel | createSimulinkBehavior

More About
• “Compose Architectures Visually” on page 1-2
• “Create an Export-Function Model”
• “Class Diagram View of Software Architectures” on page 10-20
• “Modeling Software Architecture of Throttle Position Control System” on page 10-14
• “Simulate and Deploy Software Architectures” on page 10-8

 Author Software Architectures

10-7

Simulate and Deploy Software Architectures

This example shows how to build a multi-component software architecture model with a rate-based
and export-function components, how to simulate your design at the architecture level, and how to
generate code.

Open the Software Architecture Model

After opening the example, open the model below. This software architecture model has two software
components: Export_Function and Rate_Based.

open_system('RateBasedExportFunctionSoftwareArchitectureModel')

In the software architecture model, the Export_Function component is linked to a Simulink®
export-function behavior model, export_model_software_architecture.

In this Simulink behavior, two functions are modeled using Function-Call Subsystem blocks. The
inport blocks are connected to the function-call input ports and generate periodic function-call events
with sample times 10ms and 100ms. To learn how to model this behavior, see “Create an Export-
Function Model”.

10 Software Architectures

10-8

If the inport blocks that are connected to the function-call input ports with sample time specified as
-1, meaning the functions are aperiodic, use a Simulink test model with explicit scheduling blocks
such as a Stateflow chart to simulate. For more information see Test Software Architecture on page
10-11.

The Rate_Based component is linked to rate_based_model_software_architecture as the
Simulink behavior model. To learn how to create this rate-based model, see “Create A Rate-Based
Model”.

Simulate the Model with Default Execution Order

Simulate the model. Observe that the Simulation Data Inspector displays the output from the Rate-
Based component.

 Simulate and Deploy Software Architectures

10-9

Visualize and Edit Component Functions Using Functions Editor

Use the Functions Editor to edit simulation execution order of the functions in your software
architecture. You can also edit the sample time of the functions with inherited sample time (-1).

The Functions Editor is visible only when you model software architectures. To open the Functions
Editor, in the toolstrip on the Modeling tab, select Functions Editor.

To edit the functions in your software architecture:

1 Open the Functions Editor. When you open the Functions Editor, the model will automatically
update, and the table will display the functions populated from your model.

2 If there are changes in the software architecture model, the Update Model button becomes
yellow to signal that an update is required to refresh your functions table.

3 To arrange the execution order of the functions, use the up and down arrows or drag and drop
functions to sort them.

4 To edit sample times of the functions, specify their period in the table.

10 Software Architectures

10-10

To order functions based on their data dependencies, select the Order functions by dependency
check box. To enable sorting of functions based on dependencies, you can set this parameter.

set_param('RateBasedExportFunctionSoftwareArchitectureModel','OrderFunctionsByDependency','on')

The default value for the parameter is off.

Alternatively, you can use the systemcomposer.arch.Function object to get the functions
programmatically.

Test Software Architecture

You can test a software architecture model and simulate different execution orders of functions by
referencing it from a Model block in a Simulink test model with explicit scheduling blocks such as
Stateflow® Chart (Stateflow).

In this example, a Model block that references a software architecture model has a function-call input
port for each function in the architecture model.

To simulate the architecture model with a Stateflow chart periodic scheduler, connect the Stateflow
chart function-call outputs to the Model block function-call inputs.

Deploy Software Architecture

You can generate code from the software architecture model for the functions of the export-function
and rate-based components.

To generate code, from the Apps tab, select Embedded Coder. On the C Code tab, select Generate
Code. The generated code contains an entry-point for each function of the component. For more
information, see “Generate Code for Export-Function Model”.

For the export-function component, it generated the two functions that correspond to the function-
call inport blocks inside the referenced export-function model.

 Simulate and Deploy Software Architectures

10-11

Observe that, each rate-based component has separate entry point functions that correspond to each
sample time in the referenced rate based model.

10 Software Architectures

10-12

See Also
systemcomposer.createModel | createArchitectureModel | createSimulinkBehavior |
increaseExecutionOrder | decreaseExecutionOrder

More About
• “Author Software Architectures” on page 10-2
• “Compose Architectures Visually” on page 1-2
• “Create an Export-Function Model”
• “Create A Rate-Based Model”
• “Class Diagram View of Software Architectures” on page 10-20
• “Modeling Software Architecture of Throttle Position Control System” on page 10-14
• “Software Component Modeling”

 Simulate and Deploy Software Architectures

10-13

Modeling Software Architecture of Throttle Position Control
System

This example shows how to author the software architecture of a throttle position control system in
System Composer™, schedule and simulate the execution order of the functions from its components,
and generate code.

Throttle Control Composition

In this example, the software architecture of a throttle position control system is modeled in System
Composer using six components. The throttle position control component reads the throttle and pedal
positions and outputs the new throttle position. Two throttle position sensor components provide the
current position of the throttle, and a pedal position sensor component provides the applied pedal
position. A controller component uses these signals to determine the new throttle position as a
percent value. An actuator component then converts the percent value to the appropriate value for
the hardware.

model = systemcomposer.openModel('ThrottleControlComposition');

Simulate the Model at the Architecture Level

Simulate the software architecture model.

sim('ThrottleControlComposition');

To view the list of functions from the components and edit their properties, such as execution order,
use the Functions Editor. To open the Functions Editor, on the Modeling tab, in the Design section,

10 Software Architectures

10-14

click Functions Editor. For more information about the Functions Editor, see “Simulate and Deploy
Software Architectures” on page 10-8.

Simulate the Model at the System Level

To simulate the throttle control system with the throttle body, use a Model block to reference the
software architecture model in the system model. The ThrottleControlSystem model also
contains a Stateflow® Chart block to model a more complex scheduling of the functions of the
software architecture.

A Stateflow license is required for this functionality.

open_system('ThrottleControlSystem');

 Modeling Software Architecture of Throttle Position Control System

10-15

To simulate the system model containing the plant and Stateflow scheduler, use this command.

sim('ThrottleControlSystem');

10 Software Architectures

10-16

View the Types in the Software Architecture

To view the unique component types in the software architecture, create a class diagram view and
add all components. To create a class diagram view, on the Modeling tab, in the Views section, click
Architecture Views, then click New to create a new class diagram. Select Class Diagram from the
Diagram section in the Views Gallery. From the list, select Add Component Filter > Select All
Components to add all components in the software architecture to the view.

To populate methods in the class diagram, you must compile the software architecture model. To
compile the model, navigate to Modeling > Update Model.

For more information, see “Class Diagram View of Software Architectures” on page 10-20.

 Modeling Software Architecture of Throttle Position Control System

10-17

Code Generation

You can generate code to deploy the control system to the target hardware. Code generation requires
an Embedded Coder® license. Open the ThrottleControlComposition model and execute the
slbuild command, or press Ctrl+B to build the model and generate code.

slbuild('ThrottleControlComposition');

The generated code contains an entry-point function for each function of the components in the
software architecture. For more information on code generation for export-function models, see
“Generate Code for Export-Function Model”

10 Software Architectures

10-18

Copyright 2020-2021 The MathWorks, Inc.

See Also
systemcomposer.createModel | createArchitectureModel | createSimulinkBehavior |
increaseExecutionOrder | decreaseExecutionOrder

More About
• “Author Software Architectures” on page 10-2
• “Simulate and Deploy Software Architectures” on page 10-8
• “Class Diagram View of Software Architectures” on page 10-20

 Modeling Software Architecture of Throttle Position Control System

10-19

Class Diagram View of Software Architectures
Use class diagrams to display a graphical representation of the structure of a software architecture
model. You can also use spotlight views to analyze component dependencies and hierarchy, and you
can use component hierarchy views to visualize the component hierarchy as a tree diagram. For more
information, see “Create Spotlight Views” on page 11-2 and “Display Component Hierarchy and
Architecture Hierarchy Using Views” on page 11-21.

A class diagram is a graphical representation of a static structural model that displays unique
architecture types of the software components optionally with software methods and properties.

Class diagrams capture one instance of each referenced model and show relationships between them.
Any component diagram view can be optionally represented as a class diagram for a software
architecture model.

Software Architecture with Class Diagram View

This example uses a software architecture model with functions, stereotypes, and properties to
explore class diagrams in the Architecture Views Gallery. Open the model to follow the steps in this
tutorial.

Interact with Class Diagram View
1 Simulate the model to compile it and populate functions. On the toolstrip, click Run.

Alternatively, update the model to compile it by navigating to Modeling > Update Model.
2 To open the Architecture Views Gallery, navigate to Modeling > Architecture Views.
3 From the View Browser, select the View 1 view.
4 To open the class diagram view, click Diagram > Class Diagram.

10 Software Architectures

10-20

The class diagram consists of:

• A class box for each unique component type, including reference components.
• A class box as the root that corresponds to the root architecture of the top model.
• Composition connections between the types.

If there are multiple instances of the same type of component, for example, multiple components
that reference the same model across the model hierarchy, then the type of the component is still
represented as one unique box. The component will also relate to its parents and children via
multiple composition connections.

5 You can select Hide methods to simplify the output by removing software functions from the
diagram. Select Hide properties to hide information about stereotypes and property values
applied to the components.

Client-Server Interfaces in Class Diagram View

Class diagrams display service (client-server) interfaces. The diagram shows the service interface
classes and available services.

 Class Diagram View of Software Architectures

10-21

In this example, a software architecture has two components that are connected with client and
server ports. The Interface Editor shows the interface assigned to the client and server ports.

model = systemcomposer.openModel("SoftwareArchitectureClientServer");

openViews(model)

This is the class diagram view of the software architecture.

• The icon on the upper right of the component distinguishes the service interface class.
• The service interface class contains function prototypes as services.
• The diagram displays an aggregation connection for the client port.
• The diagram displays a composition connection for the server port.

10 Software Architectures

10-22

See Also

More About
• “Author Software Architectures” on page 10-2
• “Simulate and Deploy Software Architectures” on page 10-8
• “Modeling Software Architecture of Throttle Position Control System” on page 10-14
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21
• “Author Service Interfaces for Client-Server Communication” on page 10-41

 Class Diagram View of Software Architectures

10-23

Author and Extend Functions for Software Architectures
For inline components, you can author functions in the architecture level using the Functions Editor
or by using the addFunction function. You can then implement Simulink behaviors for your
authored functions.

For reference components, the functions are automatically created from the referenced behavior
Simulink models. For information, see “Simulate and Deploy Software Architectures” on page 10-8.

In this topic, we explain the workflow to create functions in the architecture level and describe how
to:

• Author and visualize functions.
• Implement behaviors for the functions.
• Import and export functions.
• Add custom properties to functions using stereotypes.

Author and Visualize Functions Using Functions Editor
You can author and visualize functions for your software architectures using the Functions Editor.
The Functions Editor is visible only when you model software architectures.

To open the Functions Editor, in the toolstrip, navigate to Modeling > Functions Editor. The
model automatically updates, and the table displays the functions of components in your model.

This example shows a software architecture with two components and the Functions Editor with an
empty table.

10 Software Architectures

10-24

To author functions and sort them based on the order of execution:

1 Add a function. Select Component1 as the parent. Use the same steps to add a function for
Component2.

 Author and Extend Functions for Software Architectures

10-25

2 Arrange the execution order of the functions by using the up and down arrows or clicking and
dragging functions to sort them.

3 You can change the name of these functions by modifying the name in the table. Change the
name of the first function to myFunction.

10 Software Architectures

10-26

4 You can edit sample times of these functions by specifying their period in the table. Change the
period of the first function to 1.

5 You can order functions automatically based on their data dependencies. This functionality is
available for functions from behavior models. To enable automatic sorting, select the Order
functions by dependency check box or enable OrderFunctionsByDependency on the
architecture model.
set_param('RateBasedExportFunctionSoftwareArchitectureModel','OrderFunctionsByDependency','on')

The default value for the parameter is off.

The Functions Editor visualizes the functions created at the architecture level and the functions
implemented in a Simulink model that is referenced by a component.

In this example, a third function is created in a Simulink behavior model, and the model is referenced
by a third component, Component3. The Software Component column of the table shows the
difference between functions created at the architecture level and functions created in a Simulink
behavior and referenced by a component.

 Author and Extend Functions for Software Architectures

10-27

Author Functions Programmatically
You can also author functions for your components using the addFunction function.

Use the addFunction function to add a set of functions to the software architecture component,
architecture with specified names functionNames.

addFunction(architecture,functionNames)

For more information, see addFunction.

10 Software Architectures

10-28

Implement Behaviors for Functions in the Architecture Level
You can create functions in the architecture level, and then implement behaviors for your functions.

• To implement functions using the toolstrip:

1 Under the Modeling tab, select Component, and select Create Simulink Behavior.
2 Select the Type of the Simulink behavior as rate-based or export-function.

Alternatively, you can right-click a component and select Create Simulink Behavior.
• You can also use the createSimulinkBehavior function to implement functions

programmatically. The function creates a new rate-based or export-function behavior and links the
software component to the new model. You can create rate-based or export-function behaviors
only for software architectures.
createSimulinkBehavior(component,"mySoftwareModel",BehaviorType="RateBased")

Apply Stereotypes to Functions of Software Architectures
You can extend software architecture functions by adding stereotypes containing custom properties.
These steps describe how to add stereotypes to your functions and are very similar to the steps to add
stereotypes to other architectural elements. For more information, see “Extend Architectural
Elements”.

1 Define your function stereotypes using the Profile Editor.

 Author and Extend Functions for Software Architectures

10-29

2 Use the Functions Editor to select functions in your software component, apply stereotypes,
view the stereotypes applied to your functions, and edit the stereotype property values.

In this example, you can specify the value for the FunctionValue property of the stereotype
called FunctionStereotype using the Property Inspector.

Import and Export Functions of Software Architectures
You can import and export functions of your software architectures.

• Use the systemcomposer.exportModel function to output a functions field that contains a
table with information such as the name, execution order, parent component ID, period, and
stereotypes of a function.

10 Software Architectures

10-30

This example shows how to export a software architecture model mySoftwareArchitecture.
The exportedSet output has the functions field that contains the table with function
information.

exportedSet = systemcomposer.exportModel('MySoftwareArchitecture')

exportedSet =

 struct with fields:

 components: [4×5 table]
 ports: [6×4 table]
 connections: [3×5 table]
 portInterfaces: [0×9 table]
 requirementLinks: [0×15 table]
 domain: 'Software'
 functions: [3×4 table]

>> exportedSet.functions

ans =

 3×4 table

 Name ExecutionOrder CompID Period
 _____________________ ______________ ______ ______

 "myFunction" "1" "1" "1"
 "Component2_Function" "2" "2" "-1"
 "Component3_D1" "3" "3" "0.2"

• Use the systemcomposer.importModel function to import a model with functions where the
importStruct argument can have a functions field that contains function information.

See Also

More About
• “Author Software Architectures” on page 10-2
• “Simulate and Deploy Software Architectures” on page 10-8
• “Modeling Software Architecture of Throttle Position Control System” on page 10-14
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21

 Author and Extend Functions for Software Architectures

10-31

Merge Message Lines Using Adapter Block

This example shows how to use a Merge block to route messages between software components in a
software architecture. A Merge block is an Adapter block preconfigured to merge message and signal
lines.

Open the model.

systemcomposer.openModel('MergeMessagesfromSoftwareComponents');

In this model, message-based communication is constructed between three software components: two
send components, Component1 and Component2 create messages and send them to a receive
component, Component3.

A FIFO queue is used as a message buffer between the components.

Component1 is linked to the Simulink® behavior model swMergeSend1 that generates messages
with value 1 in every 0.1 sample time.

Component2 is linked to the Simulink behavior swMergeSend2 that generates messages with value
2 in every 0.3 sample time.

10 Software Architectures

10-32

Component3 is linked to the Simulink behavior swMergeReceive that receives messages and
converts them to signals. The In Bus Element port block is used to configure the queue outside the
component as a FIFO queue of capacity 100.

Simulate the model. Observe that the Scope block in swMergeReceive displays the values received
from both components.

See Also
Adapter | Send | Receive

More About
• “Author Software Architectures” on page 10-2
• “Simulate and Deploy Software Architectures” on page 10-8
• “Merge Message Lines for Architectures Using Adapter Block” on page 7-29
• “Merge Message Lines Using a Message Merge Block”

 Merge Message Lines Using Adapter Block

10-33

Authoring Functions for Software Components of an Adaptive
Cruise Control

This example shows how to design an adaptive cruise control system in System Composer™:

• Capture the system architecture in terms of constituent software components and functions.
• Indicate which functions are critical for maintaining the desired speed of the vehicle using custom

properties.
• Implement the behavior of the functions using Simulink.

Adaptive Cruise Control Architecture

An adaptive cruise control (ACC) system is a control system that modifies the speed of a vehicle in
response to conditions on the road. As in regular cruise control, the driver sets a desired speed for
the vehicle. Additionally, the adaptive cruise control system can slow the vehicle down if there is
another vehicle moving more slowly in the lane in front of it.

The ACC algorithm requires that the vehicle knows the curvature of the road, the relative distance,
and velocity of the lead vehicle immediately in front of it. For more information about the ACC
algorithm and the entire system, see “Adaptive Cruise Control with Sensor Fusion” (Automated
Driving Toolbox). The system software retrieves detections from a radar sensor and video from a
camera, which are fused by a sensor fusion component for more accurate detections. The detections
are provided to multi-object tracker to determine the relative distance and velocity of the lead
vehicle. These states and the longitudinal velocity of the vehicle are then provided to a controller
component to compute the acceleration to apply to the vehicle to maintain a safe distance.

Author Components and Interfaces

First, create the architecture of the adaptive cruise control software. To open a new software
architecture model, use this command.

systemcomposer.createModel('ACCSoftwareCompositionScratch', 'SoftwareArchitecture', true);

The system is composed of a SensorFusion component, a MultiObjectTracking component, a
Controller component, and a TrackerLogging component for monitoring.

10 Software Architectures

10-34

Author Component Functions

To specify the functions that define the behavior of each component, open the Functions Editor. To
open the Functions Editor, on the Modeling tab, in the Design section, click Functions Editor. To
create the functions to implement the behavior of each component, select a component and use the
add button. For more information about authoring functions using the Functions Editor, see “Author
and Extend Functions for Software Architectures” on page 10-24.

You can modify the built-in function properties such as the name, period, or execution order. The
name and period properties can be modified by editing the corresponding cells in the table. You can
specify the execution order of functions in the Functions Editor by dragging functions into the desired
order or by selecting a function and clicking the up and down buttons.

 Authoring Functions for Software Components of an Adaptive Cruise Control

10-35

Add Custom Properties to Functions

You can apply custom properties using System Composer profiles and stereotypes. Load the profile
ACCSoftwareProfile and import it into the composition. The profile constains three stereotypes.

• FunctionBase is a stereotype used as the base for all function stereotypes.
• CriticalFunction stereotype applies to functions that are critical in determining the output

acceleration.
• NonCriticalFunction stereotype applies to functions that are not critical in determining the

output acceleration.

10 Software Architectures

10-36

Add custom properties to a function by applying stereotypes from the loaded profile.

1 To open the Property Inspector, select Modeling > Design > Property Inspector.
2 In the Functions Editor, select fuse_vision_and_radar.
3 In the Property Inspector, select Stereotype > Add

ACCSoftwareProfile.CriticalFunction to apply the stereotype.

 Authoring Functions for Software Components of an Adaptive Cruise Control

10-37

This stereotype designates functions that are executed to determine the output acceleration. In the
ACC software architecture, all functions are critical to determining the acceleration except for the
functions defined in the TrackerLogging component.

Generate Code for Functions

Code for the adaptive cruise control system can be generated and deployed to the target hardware
using Embedded Coder®. To generate code, execute the slbuild command, or press Ctrl+B to
build the model.

slbuild('ACCSoftwareCompositionScratch');

10 Software Architectures

10-38

Since no component has a linked behavior, the generated code contains empty definitions for each
function in the software architecture.

Implement Behaviors for Functions

You can implement the behaviors for functions of a component in Simulink by creating a Simulink
behavior. Right-click the SensorFusion component and select Create Simulink Behavior, or
navigate to Modeling > Component > Create Simulink Behavior. To choose the type of the
Simulink behavior, for Type, select Model Reference: Export-Function or Model Reference:
Rate-Based. Click OK to create a SensorFusion export-function model linked to the
SensorFusion component.

For more information on using the export-function modeling style, see “Export-Function Models
Overview”.

 Authoring Functions for Software Components of an Adaptive Cruise Control

10-39

The new model contains one inport block with a function-call output port,
fuse_vision_and_radar, with a sample time of 0.1 seconds, as specified in the Functions Editor.
You can connect the output port to a function-call subsystem that models the behavior of that
function.

Copyright 2021 The MathWorks, Inc.

10 Software Architectures

10-40

Author Service Interfaces for Client-Server Communication
You can model client-server connections between software components in software architectures in
System Composer using client ports and server ports and associating service interfaces with these
ports.

To expose services performed by a software component, create a server port on that component. To
access those services from within another software component, create a client port on the second
component and connect the two ports. The ball and socket icons represent server and client ports,
respectively. You can also author client and server ports at the composition level, with client-server
lines crossing multiple hierarchies.

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements.

A function element describes the attributes of a function in a client-server interface.

Use the Interface Editor to author and edit service interfaces.

Edit the function prototype on a function element to change the number and names of inputs and
outputs of the function. Edit function element properties as you would edit other interface element
properties. Function argument types can include built-in types as well as bus objects. You can specify
function elements to support:

• Synchronous execution — When the client calls the server, the function runs immediately and
returns the output arguments to the client.

• Asynchronous execution — When the client makes a request to call the server, the function is
executed asynchronously based on the priority order defined in the Functions Editor and
Schedule Editor and returns the output arguments to the client.

For asynchronous simulation, for the function element on the Interface Editor, select the
Asynchronous check box.

 Author Service Interfaces for Client-Server Communication

10-41

A function argument describes the attributes of an input or output argument in a function element.

You can set the properties of a function argument in the Interface Editor just as you would any
value type: Type, Dimensions, Units, Complexity, Minimum, Maximum, and Description.

Once you have defined a service interface in the Interface Editor, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

To implement function behavior for components with client or server ports using referenced Simulink
models, right-click a component and select Create Simulink behavior, or use the
createSimulinkBehavior function. System Composer creates a new export-function model and
links the component to the new model.

For a component with a server port, the model contains a Function Element block and a port-scoped
Simulink Function block for each function element of the service interface associated with the server
port. The Simulink Function blocks are preconfigured with a function interface specification to match
each function element of the service interface. The Function Element block creates an exporting
function port in the Simulink model. The attributes of the port are based on the service interface
definition.

To implement the desired algorithm for each server function, open the Simulink Function blocks and
add and connect the needed blocks and other modeling elements.

Synchronous Client-Server Simulink Behavior
For a component with a client port, the model contains a Function Element Call block and a Function-
Call Subsystem block containing a Function Caller block for each function element of the service
interface associated with the client port. The Function Caller blocks are preconfigured with a
Function prototype and argument specifications to match each function element of the service
interface. The Function Element Call block creates an invoking function port in the Simulink model.
The attributes of the port are based on the service interface definition.

10 Software Architectures

10-42

Asynchronous Client-Server Simulink Behavior
You can model asynchronous execution if you select the Asynchronous check box on the Interface
Editor for your function element.

The export-function model for the Simulink behavior for the client model now has a Function Caller
block with a message output port consistent with the number of output arguments for the Simulink
Function.

• If there is one function output argument, the output argument becomes the message payload.
• If there is more than one function output argument, the Function Caller block bundles the output

arguments as a structure that becomes the message payload.

The Function Caller message output port is connected to a Message Triggered Subsystem that
processes messages.

 Author Service Interfaces for Client-Server Communication

10-43

See Also
Function Element | Function Element Call | Simulink Function | Function Caller | Function-Call
Subsystem | Message Triggered Subsystem | addServiceInterface | setFunctionPrototype |
getFunctionArgument | setAsynchronous

Related Examples
• “Simulate Asynchronous Services for Vehicle Headlight Management” on page 10-53
• “Define Port Interfaces Between Components” on page 3-2
• “Call Simulink Functions in Other Models Using Function Ports”
• “Service-Oriented Sensor Modeling” on page 10-45
• “Software Component Modeling”
• “Author and Extend Functions for Software Architectures” on page 10-24

10 Software Architectures

10-44

Service-Oriented Sensor Modeling

This example shows how to use a service interface in a software architecture model to allow a
component to call services provided by specific instances of a referenced component.

Overview

In this example, the model slexServiceInterfaceExample consists of a controller component,
Controller, and two sensor components, Sensor1 and Sensor2. The sensor components are
modeled as two different instances of the same referenced model, scSensorModelRef. The
referenced model defines two services: reset, which resets the sensor from drifting over time, and
fetchData, which reads the latest sensor values. A single service interface is specified between the
controller and the two sensor instances, which allows the controller to call reset or fetchData for
a specific instance of the referenced sensor component.

Open the model.

model = systemcomposer.openModel('scServiceInterfaceExample');

Both instances of the referenced sensor model output a sine wave with different amplitudes. You can
view and specify the amplitudes in the Model Data Editor of the top model. To access the Model Data
Editor, go to the Modeling tab, and in the Design section, select Model Data Editor.

 Service-Oriented Sensor Modeling

10-45

A Class Diagram View can be used to visualize the relationship between the controller and the
referenced sensor component. To open the Class Diagram View, go to the Modeling tab, and in the
Views section, select Architecture Views.

Client-Server Ports

The controller component interacts with the sensor components using client-server ports. Function
calls to the services provided by the sensors and their responses are handled through these ports.
Each client-server port is mapped to the service interface sensorCmd, which defines the services.

10 Software Architectures

10-46

Service Interface Specification

The service interface sensorCmd is defined through the Interface Editor. To access the Interface
Editor, go to the Modeling tab, and in the Design section, select Interface Editor. The service
interface sensorCmd is used across referenced models and stored in the data dictionary
slexServiceInterfaceExample.sldd. Note that sensorCmd contains two functions, reset and
fetchData.

In this example, the sensors exhibit a drift that increases over time. The controller calls the
fetchData service to receive the sensor output and calls the reset service periodically to reset the
drift back to 0. To visualize the sensor outputs, go to the Simulation tab, and in the Review Results
section, select Data Inspector.

 Service-Oriented Sensor Modeling

10-47

Function Scheduling

You can schedule the functions of the controller through the Functions Editor. To access the
Functions Editor, go to the Modeling tab, and in the Design section, select Functions Editor. In
this example, the reset function is called by the controller every 0.2 seconds, while the fetchData
function is called every 0.1 seconds. Note that there is a Boolean input argument for the reset
function, resetData. By default, resetData is false, and thus the reset function does not reset
the sensors until the controller sets resetData to true. In this example, the controller component is
configured to set resetData to true every 50 samples of the reset function, or every 10 seconds.

10 Software Architectures

10-48

You can view the sequence of function calls throughout the simulation of the model in the Sequence
Viewer. To access the Sequence Viewer, go to the Simulation tab, and in the Review Results
section, select Sequence Viewer.

Code Generation

To generate code for the model, which includes the service interface sensorCmd, use this command.

rtwbuild('scServiceInterfaceSensorExample');

Note that the service interface SensorCmd is generated as an abstract class. This action enables
implementation to be separate from the interface.

 Service-Oriented Sensor Modeling

10-49

This abstract class is implemented by the generated code for the referenced sensor model.

10 Software Architectures

10-50

The generated abstract class is also used to construct the class of the controller.

 Service-Oriented Sensor Modeling

10-51

The service is subsequently called by the controller from the SensorCmd abstract class.

See Also
Function Element | Function Element Call | Simulink Function | Function Caller | Function-Call
Subsystem | addServiceInterface | setFunctionPrototype | getFunctionArgument

Related Examples
• “Define Port Interfaces Between Components” on page 3-2
• “Author and Extend Functions for Software Architectures” on page 10-24
• “Software Component Modeling”
• “Author Service Interfaces for Client-Server Communication” on page 10-41
• “Call Simulink Functions in Other Models Using Function Ports”
• “Simulate Asynchronous Services for Vehicle Headlight Management” on page 10-53

10 Software Architectures

10-52

Simulate Asynchronous Services for Vehicle Headlight
Management

This example shows how to use asynchronous services to simulate vehicle headlights in a System
Composer™ software architecture model.

Overview

In this example, the model HeadlightArch consists of a lighting manager component,
LightingManager, two headlight components, LeftHeadlight and RightHeadlight, and a
component for logging, Logging. The headlight components are modeled as two different instances
of the same referenced model, HeadLight.

The referenced model defines two Simulink® Functions:

• setMode, which takes in the lightMode variable and returns an output that indicates whether
the headlight is broken

• getMode, which returns the lightMode variable

A single service interface is specified between the lighting manager and the two headlight instances,
which allows the manager to call setMode or getMode for a specific instance of the referenced
headlight component.

Open the model.

model = systemcomposer.openModel("HeadlightArch");

Define Asynchronous Services Using Interface Editor

To view the Interface Editor, on the toolstrip, navigate to Modeling > Interface Editor. Notice that
the Asynchronous check box is selected for the function elements representing the functions
getMode and setMode.

 Simulate Asynchronous Services for Vehicle Headlight Management

10-53

The block parameters for the Simulink behavior models are preconfigured to support asynchronous
simulation.

On the server model, the Trigger block parameter Execute function call asynchronously
within the Simulink Function blocks for setMode and getMode is selected. On the client model, the
Function Caller block parameter Execute function call asynchronously is selected.

Asynchronous Function Calls for Simulation of Vehicle Headlights

For asynchronous execution, when the client makes a request to the server, the server responds
according to the priority order defined in the Functions Editor instead of the order in which the
requests were received. To launch the Functions Editor tool, on the toolstrip, go to Modeling >
Functions Editor.

Use the Functions Editor tool to change the order of execution of the functions so that when these
functions are called at the same time, the higher priority function is executed first.

If a function from the list calls another function:

• If a lower priority function is already running, the higher priority function runs. After its
completion, the lower priority function continues to run.

• If a higher priority function is already running, the lower priority function runs after the higher
priority one.

10 Software Architectures

10-54

For asynchronous function calls, the Function Caller block has a message output port consistent with
the number of output arguments. This message output port connects to a Message Triggered
Subsystem block to process the messages. The LightingManager component references the
LightingManager Simulink model that consists of two asynchronous function calls. The
changelLightMode Function-Call Subsystem uses the setMode function and determines how each
headlight should change its lighting mode. The checkLight Function-Call Subsystem uses the
getMode function and checks whether each headlight is broken and returns its status.

 Simulate Asynchronous Services for Vehicle Headlight Management

10-55

Simulate the model.

sim("HeadlightArch");

You can visualize the logged signals after simulation using the Simulation Data Inspector. On the
toolstrip, go to Simulation > Data Inspector.

10 Software Architectures

10-56

To view the execution order of the function calls, on the toolstrip, launch the Sequence Viewer by
navigating to Simulation > Sequence Viewer. Simulate the model again to view the logged
messages on the Sequence Viewer and the order in which messages are executed. Since the
setMode function is at a higher priority order on the Functions Editor, those server calls are
received first.

 Simulate Asynchronous Services for Vehicle Headlight Management

10-57

You can change the priority order of the functions in the Functions Editor and view the result in the
Sequence Viewer.

See Also
Function Element | Function Element Call | Simulink Function | Function Caller | Function-Call
Subsystem | Message Triggered Subsystem | addServiceInterface | setFunctionPrototype |
getFunctionArgument | setAsynchronous

Related Examples
• “Define Port Interfaces Between Components” on page 3-2
• “Author and Extend Functions for Software Architectures” on page 10-24
• “Software Component Modeling”
• “Author Service Interfaces for Client-Server Communication” on page 10-41
• “Call Simulink Functions in Other Models Using Function Ports”
• “Service-Oriented Sensor Modeling” on page 10-45

10 Software Architectures

10-58

Create Custom Views

11

Create Spotlight Views
A system being designed in System Composer for a real application is usually large and complex. It
typically consists of many complex functions working together to fulfill the system requirements. In
the process of designing and analyzing such architectures, you must understand existing components
and what needs to be added. A spotlight view is a simplified view of a model that captures the
upstream and downstream dependencies of a specific component. Use the model below to begin
creating spotlight views.

Mobile Robot Architecture Model with Properties

This example shows a mobile robot architecture model with stereotypes applied to components and
properties defined.

Create Spotlight Views from Components
Create views dynamically using spotlight views.

11 Create Custom Views

11-2

1 Double-click the Sensors component, then select the DataProcessing component.
2 Select the DataProcessing component and navigate to Modeling > Architecture Views >

Spotlight. Alternatively, right-click the DataProcessing component and select Create
Spotlight from Component.

The spotlight view launches and shows all model elements to which the DataProcessing
component connects. The spotlight diagram is laid out automatically and cannot be edited.
However, it allows you to inspect just a single component and study its connectivity to other
components.

Note Spotlight views are transient. They are not saved with the model.

3 Shift the spotlight to another component. Select the Motion component. Click the ellipsis above

the component to open the action menu. To create a spotlight from the component, click .

To view the architecture model at the level of a particular component, select the component and
click .

4
To return to the architecture model view, click .

 Create Spotlight Views

11-3

You can make the hierarchy and connectivity of a component visible at all times during model
development by opening the spotlight view in a separate window. To show the spotlight view in a
dedicated window, in the component context menu, select Open in New Window, then create the
spotlight view. Spotlight views are dynamic and transient: any change in the composition refreshes
any open spotlight views, and spotlight views are not saved with the model.

See Also

More About
• “Create Architecture Views Interactively” on page 11-5
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21
• “Create Architectural Views Programmatically” on page 11-15
• “Modeling System Architecture of Keyless Entry System” on page 11-25

11 Create Custom Views

11-4

Create Architecture Views Interactively

The structural hierarchy of a system typically differs from the hierarchy of the functional
requirements of a system. With architecture views in System Composer, you can view a system based
on different hierarchies.

A view shows a customizable subset of elements in a model. Views can be filtered based on
stereotypes or names of components, ports, and interfaces, along with the name, type, or units of an
interface element. Create views by adding elements manually. Views create a simplified way to work
with complex architectures by focusing on certain parts of the architectural design.

You can use different types of views to represent the system:

• Operational views demonstrate how a system will be used and should be integrated with
requirements analysis.

• Functional views focus on what the system must do to operate.
• Physical views show how the system is constructed and configured.

A viewpoint represents a stakeholder perspective that specifies the contents of the view.

For example, you can author a system using requirements. A view allows you to better understand
what components you need to satisfy your requirements while not necessarily focusing on the
structure.

This example uses the architecture model for a keyless entry system to create component diagram
views.

A component diagram represents a view with components, ports, and connectors based on how the
model is structured.

Component diagrams allow you to programmatically or manually add and remove components from
the view.

For more information on the keyless entry architecture, see “Modeling System Architecture of
Keyless Entry System” on page 11-25.

Create Filtered Views with Component Filters and Port Filters
1 In the MATLAB Command Window, enter this command.

scKeylessEntrySystem

The architecture model opens in System Composer.
2 Navigate to Modeling > Architecture Views to open the Architecture Views Gallery.

 Create Architecture Views Interactively

11-5

3 Select New > View to create a new view.
4 In View Properties on the right pane, in the Name box, enter a name for this view, for example,

Software Component Review. Choose a Color and enter a Description, if necessary.

5 In the bottom pane on View Configurations, from the Filter tab, click Add Component Filter
to add new form-based criterion to a component filter.

6 From the Select list, select Components. From the Where list, select Stereotype. Select isa.
In the text box, from the list select AutoProfile.SoftwareComponent.

11 Create Custom Views

11-6

7
Select Apply .

An architecture view is created using the query in the Component Filter box. The view is
filtered to select all components with the AutoProfile.SoftwareComponent stereotype
applied to them.

8 Select Add Component Filter. From the Select list, select Components. From the Where list,
select Name. Select ~contains. In the text box, enter "Door Lock". Select the Auto Apply
check box so that future changes are applied without selecting Apply.

9 An architecture view is created using the additional query in the Component Filter box. The
view is filtered to select all components not named "Door Lock".

 Create Architecture Views Interactively

11-7

10 From the Add Port Filter list, select the option Hide Unconnected Ports.

11 An architecture view is created using the additional query in the Port Filter box. The view is
filtered to hide unconnected ports.

11 Create Custom Views

11-8

12
Delete the port filter. Pause on the constraint and select the button.

Add Group By Criteria to Filtered Views
1 In the View Configurations pane, select Grouping.
2 To choose a property enumeration for grouping, click Add Group By.
3 From the list, select AutoProfile.BaseComponent.ReviewStatus.
4 Click Add Group By again.
5 From the list, select AutoProfile.SoftwareComponent.ImplementationLanguage.
6 Click Apply.

 Create Architecture Views Interactively

11-9

Edit Views Interactively
With the Architecture Views Gallery tool, you can edit and rearrange your view layout interactively.

• Click and drag components anywhere inside or outside the views canvas. Resize components
inside and outside the views canvas. The views canvas expands to accommodate the moves.

• Move and resize a parent component with its children. Rearrange child components inside a
parent component. After moving a child component, the parent component expands to
accommodate the change.

• When a moved or resized component partially overlaps another component, the system is
highlighted to indicate an incorrect final state.

• Click and drag around a region to select multiple components and manipulate them together.
• Double-click a component on the Model Components browser to add the component to the

diagram. Right-click a component on the Model Components browser for additional options.
• Undo or redo interactive edits on the views canvas.

Follow these steps to add or delete elements from a view using the Model Components browser.

1 To add more components to the view, drag and drop components from Model Components.
Drag and drop the Lighting System component to the Software Component Review view.
Alternatively, click Add on the toolstrip. You can also press Ctrl+I to add component
instantiations to your view when you select them.

Note Interactively adding and removing elements from your view with an associated query is not
supported. You will receive a warning message: Remove associated query? Click OK to
proceed.

11 Create Custom Views

11-10

You can press Delete to delete components from the view.
2 Observe that the Lighting System component has been added to the view.

This view is now considered a freeform view.

Add or Remove Requirements Links from Views
1 Navigate to Requirement > Requirements Manager. A Requirements Toolbox license is

required. The Requirement Links tab appears at the bottom of the Software Component
Review view.

2 Select the Lighting Controller component and observe the linked requirement
Automatically turn off headlights.

 Create Architecture Views Interactively

11-11

3 Select the requirement Automatically turn off headlights to open the Requirements
Editor to view or modify requirement links.

4 In the Architecture Views Gallery, navigate to Requirement > Open Requirements Editor if
the Requirements Editor is not open already.

5 Select the Should unlock door requirement.
6 Return to the Architecture Views Gallery. In the Software Component Review view, select

the Lighting Controller component.
7 Navigate to Requirement > Link to selected requirement. The new requirement Should

unlock door is added.

11 Create Custom Views

11-12

8 To remove a requirement link, select and confirm deletion.

Add Custom Clauses to Component Filters and Port Filters
1 Select New > View to create a new view.
2 In View Properties on the right pane, in the Name box, enter a name for this view, for example,

Hardware Component View. Choose a Color and enter a Description, if necessary.
3 In the bottom pane on View Configurations, from the Filter tab, select from the list Add

Component Filter > Add Custom Component Filter to enter a constraint by which to filter. In
the box, enter contains(Property('Name'),'Dashboard').

4 In the bottom pane on View Configurations, from the Filter tab, select from the list Add Port
Filter > Add Custom Port Filter to enter a constraint by which to filter. In the box, enter
contains(Property('Name'),'sound').

5
Select Apply .

 Create Architecture Views Interactively

11-13

The view is filtered using the constraints in the custom filters. For more information on
structuring constraints, see systemcomposer.query.Constraint.

See Also

More About
• “Create Architectural Views Programmatically” on page 11-15
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21
• “Create Spotlight Views” on page 11-2
• “Modeling System Architecture of Keyless Entry System” on page 11-25

11 Create Custom Views

11-14

Create Architectural Views Programmatically
You can create an architecture view programmatically. This topic presents two examples of creating
architecture views programmatically using a keyless entry system architecture using element groups.

An element group is a grouping of components in a view.

Use element groups to programmatically populate a view.

For more information on the keyless entry architecture, see “Modeling System Architecture of
Keyless Entry System” on page 11-25.

The third example is about how to use queries to find elements in a System Composer model.

A query is a specification that describes certain constraints or criteria to be satisfied by model
elements.

Use queries to search elements with constraint criteria and to filter views.

Create Architecture Views in System Composer with Keyless Entry
System

Use a keyless entry system to programmatically create architecture views.

1. Import the package with queries.

import systemcomposer.query.*

2. Open the Simulink® project file for the Keyless Entry System.

scKeylessEntrySystem

3. Load the example model into System Composer™.

model = systemcomposer.loadModel("KeylessEntryArchitecture");

Example 1: Hardware Component Review Status View

Create a filtered view that selects all hardware components in the architecture model and groups
them using the ReviewStatus property.

1. Construct a query to select all hardware components.

hwCompQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"));

2. Use the query to create a view.

model.createView("Hardware Component Review Status",...
 Select=hwCompQuery,...
 GroupBy={'AutoProfile.BaseComponent.ReviewStatus'},...
 IncludeReferenceModels=true,...
 Color="purple");

3. To open the Architecture Views Gallery the Views section, click Architecture Views.

 Create Architectural Views Programmatically

11-15

model.openViews

Example 2: FOB Locator System Supplier View

Create a freeform view that manually pulls the components from the FOB Locator System and groups
them using existing and new view components for the suppliers. In this example, you will use element
groups, groupings of components in a view, to programmatically populate a view.

1. Create a view architecture.

fobSupplierView = model.createView("FOB Locator System Supplier Breakdown",...
 Color="lightblue");

2. Add a subgroup called Supplier D. Add the FOB Locator Module to the view element
subgroup.

supplierD = fobSupplierView.Root.createSubGroup("Supplier D");
supplierD.addElement("KeylessEntryArchitecture/FOB Locator System/FOB Locator Module");

3. Create a new subgroup for Supplier A.

supplierA = fobSupplierView.Root.createSubGroup("Supplier A");

4. Add each of the FOB Receivers to view element subgroup.

FOBLocatorSystem = model.lookup("Path","KeylessEntryArchitecture/FOB Locator System");

Find all the components which contain the name "Receiver".

11 Create Custom Views

11-16

receiverCompPaths = model.find(...
 contains(Property("Name"),"Receiver"),...
 FOBLocatorSystem.Architecture);

supplierA.addElement(receiverCompPaths)

5. Save the model.

model.save

Find Elements in Model Using Queries

Find components in a System Composer model using queries.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*

Open the model.

scKeylessEntrySystem
model = systemcomposer.loadModel("KeylessEntryArchitecture");

Find all the software components in the system.

con1 = HasStereotype(Property("Name") == "SoftwareComponent");
[compPaths,compObjs] = model.find(con1)

compPaths = 5x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

 Create Architectural Views Programmatically

11-17

compObjs=1×5 object
 1x5 Component array with properties:

 IsAdapterComponent
 Architecture
 ReferenceName
 Name
 Parent
 Ports
 OwnedPorts
 OwnedArchitecture
 Parameters
 Position
 Model
 SimulinkHandle
 SimulinkModelHandle
 UUID
 ExternalUID

Include reference models in the search.

softwareComps = model.find(con1,IncludeReferenceModels=true)

softwareComps = 9x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor/Detect Door Lock Status'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor/Detect Door Lock Status' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

Find all the base components in the system.

con2 = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.BaseComponent"));
baseComps = model.find(con2)

baseComps = 18x1 cell
 {'KeylessEntryArchitecture/Engine Control System/Start//Stop Button' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Sound System/Dashboard Speaker' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Sensor' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/FOB Locator System/Center Receiver' }
 {'KeylessEntryArchitecture/FOB Locator System/Front Receiver' }

11 Create Custom Views

11-18

 {'KeylessEntryArchitecture/FOB Locator System/Rear Receiver' }

Find all components using the interface KeyFOBPosition.

con3 = HasPort(HasInterface(Property("Name") == "KeyFOBPosition"));
con3_a = HasPort(Property("InterfaceName") == "KeyFOBPosition");
keyFOBPosComps = model.find(con3)

keyFOBPosComps = 10x1 cell
 {'KeylessEntryArchitecture/Door Lock//Unlock System' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/FOB Locator System' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/Sound System' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

Find all components whose WCET is less than or equal to 5 ms.

con4 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= 5;
model.find(con4)

ans = 1x1 cell array
 {'KeylessEntryArchitecture/Sound System/Sound Controller'}

You can specify units for automatic unit conversion.

con5 = PropertyValue("AutoProfile.SoftwareComponent.WCET") <= Value(5,'ms');
query1Comps = model.find(con5)

query1Comps = 3x1 cell
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module'}
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

Find all components whose WCET is greater than 1 ms or that have a cost greater than 10 USD.

con6 = PropertyValue("AutoProfile.SoftwareComponent.WCET") > Value(1,'ms') | PropertyValue("AutoProfile.Base.Cost") > Value(10,'USD');
query2Comps = model.find(con6)

query2Comps = 2x1 cell
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }

Close the model.

model.close

 Create Architectural Views Programmatically

11-19

See Also
find | lookup | systemcomposer.query.Constraint | createView | getView | openViews |
deleteView | systemcomposer.view.View | systemcomposer.view.ElementGroup

More About
• “Create Architecture Views Interactively” on page 11-5
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21
• “Create Spotlight Views” on page 11-2
• “Modeling System Architecture of Keyless Entry System” on page 11-25

11 Create Custom Views

11-20

Display Component Hierarchy and Architecture Hierarchy
Using Views

This example shows how to use hierarchy views in the Architecture Views Gallery to use hierarchy
views to visualize hierarchical relationships.

You can visualize a hierarchy diagram as a view with components, ports, reference types, component
stereotypes, and stereotype properties.

There are two types of hierarchy diagrams:

• Component hierarchy diagrams display components in tree form with parents above children. In a
component hierarchy view, each referenced model is represented as many times as it is used.

• Architecture hierarchy diagrams display unique component architecture types and their
relationships using composition connections. In an architecture hierarchy view, each referenced
model is represented only once.

Any component diagram view can be optionally represented as a hierarchy diagram. The hierarchy
view shows the same set of components visible in the component diagram view, and the components
are selected and filtered in the same way as in a component diagram view.

This example uses an architecture model representing data flow within a robotic system. Open this
model to follow the steps in the tutorial.

Robot Computer Systems Architecture

Use a robot computer system with controllers that simulate transmission of data to explore hierarchy
diagrams in the Architecture Views Gallery.

 Display Component Hierarchy and Architecture Hierarchy Using Views

11-21

Switch Between Component Diagram View and Hierarchy Views
1 To open the Architecture Views Gallery, navigate to Modeling > Architecture Views.
2 From the View Browser, select the All Components view.
3 Observe the component diagram view that corresponds to the all the components in the

architecture model.

The component diagram represents a view with components, ports, and connectors based on how
the model is structured.

4 In the Diagram section of the toolstrip, click Component Hierarchy.

11 Create Custom Views

11-22

5 Observe the component hierarchy view that corresponds to the same set of components.

The component hierarchy diagram shows a single root, which is the view specification itself. The
root corresponds to the name of the view shown in the component diagram. The connections in
the component hierarchy diagram originate from the child components and end with a diamond
symbol at each parent component.

6 In the Diagram section of the toolstrip, click Architecture Hierarchy.

7 Observe the architecture hierarchy view that corresponds to the same set of components.

 Display Component Hierarchy and Architecture Hierarchy Using Views

11-23

The architecture hierarchy diagram starts with the root architecture. The root corresponds to the
boundary of the system. A box in an architecture hierarchy diagram represents a referenced
model and appears only once even if it is referenced multiple times in the same model. For
example, ControllerSimulink, a referenced model that appears on three components, has
three connections to its parent architectures. The connectivity of the boxes represents the
relationship between ContollerSimulink and its parents.

See Also

More About
• “Create Architectural Views Programmatically” on page 11-15
• “Create Architecture Views Interactively” on page 11-5
• “Create Spotlight Views” on page 11-2
• “Modeling System Architecture of Keyless Entry System” on page 11-25
• “Class Diagram View of Software Architectures” on page 10-20

11 Create Custom Views

11-24

Modeling System Architecture of Keyless Entry System

This example shows how to set up the architecture for a keyless entry system for a vehicle in System
Composer™. You also learn how to create different architecture views for different stakeholder
concerns. This example follows a model-based systems engineering (MBSE) workflow:

1 Define Stakeholder Requirements
2 Define Logical Architecture Model
3 Define Stereotypes to Classify Components
4 Define Port Interfaces to Describe Data Flow
5 Create Views to Present to Stakeholders

scKeylessEntrySystem

Define Stakeholder Requirements

In MBSE design, functional requirements represent high-level stakeholder requirements based on
needs and concerns for the design to address. Run this command to open the Requirements Editor
(Requirements Toolbox) with the functional requirements. A Requirements Toolbox™ license is
required to inspect requirements in a System Composer architecture model.

 Modeling System Architecture of Keyless Entry System

11-25

slreq.load('FunctionalRequirements');

slreq.editor

These stakeholder requirements specify that the architecture model must include a door lock and
unlock system, a lighting control system, a sound system, and an engine control system. These
components should meet requirements after passing quality checks. For more information, see
“Manage Requirements” on page 2-8.

Define Logical Architecture Model

The logical architecture of a keyless entry system includes sensors, a mechanical door lock system, a
lighting system, a sound system, and an engine control system. These components interact based on
the information passed through their ports by connections. Each top-level component can be
decomposed into its subcomponents to represent an architectural hierarchy.

Decompose the FOB Locator System

The FOB Locator System component includes the system the vehicle uses to receive a wireless
signal and isolate the location of the key to lock or unlock doors. This action is the first step in
implementing a keyless entry system.

11 Create Custom Views

11-26

The referenced architecture FOB Receiver is reused to type the three receivers on the vehicle on
the front, center, and rear. Each receiver sends a signal, RxSignal, to the FOB Locator Module
component that determines the key location, keyLocation, and transmits the key location to all the
other systems represented by components.

Decompose the Door Lock and Unlock System

After the key location is identified, the automated door lock and unlock system activates. The door
lock and unlock system has both hardware and software components.

 Modeling System Architecture of Keyless Entry System

11-27

All four doors for the vehicle have sensors that detect whether the door is locked. The
DoorLockSensor referenced architecture types these components. According to the information
passed through the FOB, the Door Lock Controller component activates the actuators for the
four doors to optionally implement the door locks. The DoorLockActuator referenced architecture
types the actuators. The door lock status doorStatus is transmitted through the boundary from the
Door Lock Controller component.

Decompose the Sound System

The Sound System component controls emitting sounds to indicate key location, door status, and
engine status.

11 Create Custom Views

11-28

The software for the Sound Controller component sends a command to the Dashboard Speaker
component to process and make the sounds.

Decompose the Engine Control System

The engine control system contains a system to control the brakes, transmission, and engine. The
keyless entry system activates a keyless start controller that starts or stops the vehicle.

 Modeling System Architecture of Keyless Entry System

11-29

The keyLocation signal from the FOB Locator System enters the Keyless Start Controller
component, which receives feedback from the Brake System, Transmission System, and Engine
System components. Next, a signal is sent to the Engine System to start or stop the vehicle
according to the buttonPressed signal from the Start/Stop Button component.

Decompose the Lighting System

The keyless entry system sends commands from a lighting controller to activate the headlights and
cabin lights.

11 Create Custom Views

11-30

Engine status and key location information sent to the Lighting Controller component might
activate the different lights represented by the Headlights and Cabin Lights components.

Define Stereotypes to Classify Components

All components in the architecture have the appropriate stereotype applied. Use the Profile Editor
tool to define profiles, stereotypes, and properties to apply to components, ports, connectors, and
interfaces. Each of the component stereotypes inherits properties from the parent stereotype
BaseComponent. For each stereotyped component, you can define the Cost, ReviewStatus, or
Latency property values.

 Modeling System Architecture of Keyless Entry System

11-31

To stereotype components and ports, first apply the profile AutoProfile to the top model. Each of
the component stereotypes includes an icon that represents the usage of the stereotype and indicates
the component type. To apply stereotypes to all model elements in a batch process, use the Apply
Stereotypes dialog. To apply stereotypes one by one, use the Property Inspector. For more
information, see “Use Stereotypes and Profiles” on page 5-9.

Define Port Interfaces to Describe Data Flow

Composite data interfaces assigned to ports allow you to decompose the data transfer through those
ports along the connections between them. For example, the keyFOBPosition interface might
describe the elements of information passing through the keyLocation ports to different
components of the architecture.

11 Create Custom Views

11-32

The composite data interfaces that have not been decomposed demonstrate an early version of
interfaces design using the Interface Editor. To decompose data intefaces, you can add data
elements, or data elements typed by other data interfaces or typed by other value types. For more
information, see “Assign Interfaces to Ports” on page 3-9.

Create Views to Present to Stakeholders

You can create, view, and edit architecture views in the Architecture Views Gallery. To launch the
editor, on the Modeling tab in the toolstrip, click Architecture Views. Filtered views update
dynamically with changes to the model. Alternatively, you can use Spotlight Views, which are
transient views centered on specific components. For more information, see “Create Spotlight Views”
on page 11-2. The KeylessEntryArchitecture model has these views:

• Key FOB Position Dataflow — An operational view of the components in the model that make use
of the KeyFOBPosition interface.

 Modeling System Architecture of Keyless Entry System

11-33

• Door Lock System Supplier Breakdown — A functional view of the components in the door lock
system grouped by which supplier provides the given components.

• Sound System Supplier Breakdown — A functional view of the components in the sound system
grouped by which supplier provides the given components.

• Software Component Review Status — A physical view of the components in the model with the
SoftwareComponent stereotype applied grouped by the value of the ReviewStatus property.

11 Create Custom Views

11-34

See Also
createView | getView | openViews | deleteView | systemcomposer.view.View |
systemcomposer.view.ElementGroup

More About
• “Create Architecture Views Interactively” on page 11-5
• “Create Architectural Views Programmatically” on page 11-15
• “Display Component Hierarchy and Architecture Hierarchy Using Views” on page 11-21
• “Organize System Composer Files in Projects” on page 12-2
• “Modeling System Architecture of Small UAV” on page 1-32
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38

 Modeling System Architecture of Keyless Entry System

11-35

Manage Architecture Models

• “Organize System Composer Files in Projects” on page 12-2
• “Compare Model Differences Using System Composer Comparison Tool” on page 12-4

12

Organize System Composer Files in Projects
Use projects to organize your work, manage files and settings, and interact with source control.
Using System Composer generates multiple files, including but not limited to:

• Architecture models (.slx)
• Requirements Toolbox links (.slmx) and requirement sets (.slreqx)
• Allocation sets (.mldatx)
• Profiles (.xml)
• Interface data dictionaries (.sldd)
• Simulink Test files (.mldatx)
• MATLAB functions (.m) and live scripts (.mlx)
• Simulink behavior models (.slx)

To help organize these files, use projects.

Use Projects to Organize Files and Folders
Create a project from a folder with supporting files and folders.

For example, this folder structure represents typical steps in the process of model-based systems
engineering: models, profiles, interfaces, requirements, tools, tests, livescripts

The models folder can include architecture models, Simulink behavior models, and requirement
links. If architecture models and behavior models are constructed separately, you can split the
models folder into two folders, architectures and simulation, and decompose the folders
further to represent the different stages of architectural model-based design. The tools folder can
include functions and scripts for trade studies and analyses.

1 In MATLAB, navigate to the directory where your model files and artifacts are located.
2 Select New > Project > From Folder. Enter a name for your project.

3 The files in the folder you specify are added to the project, and the Project menu appears. To
generate your own project shortcuts, on the Project Shortcuts tab, click New Shortcut or
Organize Groups.

4 You can open the project again using the generated .prj file in your directory.

12 Manage Architecture Models

12-2

Any changes you make will be organized in the project. You can manage changes to files with multiple
contributors using source control. For more information on source control with projects, see “About
Source Control with Projects”.

To illustrate file dependencies across the project, use the Dependency Analyzer. For more
information, see “Dependency Analysis for Projects”. To check and upgrade the project, use the Run
Checks option.

See Also

More About
• “Modeling System Architecture of Small UAV” on page 1-32
• “Modeling System Architecture of Keyless Entry System” on page 11-25
• “Allocate Architectures in Tire Pressure Monitoring System” on page 8-10
• “Calculate Endurance Using Quadcopter Architectural Design” on page 9-16
• “Design Insulin Infusion Pump Using Model-Based Systems Engineering” on page 9-23
• “Model-Based Systems Engineering for Space-Based Applications” on page 1-38

 Organize System Composer Files in Projects

12-3

Compare Model Differences Using System Composer
Comparison Tool

This example shows how to use the Comparison Tool to compare two System Composer™
architecture models with differences in architectural data. The models represent a mobile robot
hardware architecture and an edited version of the same model.

To open the Comparison Tool, enter this command.

visdiff("scMobileRobotHardwareArchitecture.slx","scMobileRobotHardwareArchitectureEdited.slx")

Compare Structural Differences

The first section of the System Composer comparison report is called Architecture. The
differences in this section include changes to components, ports, and connectors. This section also

12 Manage Architecture Models

12-4

includes changes to component types, port types, and any owned interfaces added to ports. The
comparison report displays:

• A new physical port named Temperature Control added to the Power Supply Board
component and connected to the Battery Pack component.

• A new port named Wheel Stud connected from the Wheels component to the Mobile Robot
Case component.

• A new owned interface with elements Signal and Message owned by the Command ouput port.
• A port on the Target Machine component renamed from Commands to Command.
• The Controller component that is converted to a Stateflow® chart component.

To learn more about specific changes, you can select the row in the comparison report and view
additional information in the bottom pane. As you click on each row of the comparison report, the
corresponding open models on the right side are highlighted.

 Compare Model Differences Using System Composer Comparison Tool

12-5

Compare Interface Dictionary Differences

The second section of the System Composer comparison report is called Interfaces. The
differences in this section include changes to interfaces on the model data dictionary. The comparison
report displays:

• Three new value type interfaces called RedPhase, GreenPhase, and BluePhase.
• A new Colors data interface with three data elements: R, G, and B.
• A new physical interface named ThermalMeasure with the physical element Heat.

When you click on the data element: R, G, or B, you can see that the element is typed by its value
type. You can also inspect the physical domain that types the physical element Heat.

Compare Views Differences

The third section of the System Composer comparison report is called Architecture Views. The
differences in this section added or deleted architecture views and shows whether the view mode has
changed between Component Diagram, Component Hierarchy, or Architecture Hierarchy.
The comparison report displays:

• The new BatteryPack view and the components that are displayed within it: Power Supply
Board, Battery Pack, and Charge Board.

• Changes to the existing views Life Expectancy and Mobile Robot due to renaming the
Battery component to Battery Pack.

12 Manage Architecture Models

12-6

When you click on each of the view names, the bottom pane will indicate if there are further
modifications to the views.

See Also
visdiff

More About
• “Compose Architectures Visually” on page 1-2
• “Define Port Interfaces Between Components” on page 3-2
• “Define Profiles and Stereotypes” on page 5-2
• “Create Architecture Views Interactively” on page 11-5
• “Implement Component Behavior Using Simulink” on page 7-2
• “Organize System Composer Files in Projects” on page 12-2

 Compare Model Differences Using System Composer Comparison Tool

12-7

Import and Export Architecture Models

• “Import and Export Architectures” on page 13-2
• “Import and Export Architecture Models” on page 13-5
• “Import System Composer Architecture Using ModelBuilder” on page 13-13
• “System Composer Report Generation for System Architectures” on page 13-19

13

Import and Export Architectures

In System Composer™, an architecture is fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in or
converted into MATLAB® tables.

In this example, the architecture information of a simple unmanned aerial vehicle (UAV) system is
defined in a Microsoft® Excel® spreadsheet and is used to create a System Composer architecture
model. It also links elements to the specified system level requirement. You can modify the files in this
example to import architectures defined in external tools, when the data includes the required
information. The example also shows how to export this architecture information from System
Composer architecture model to an Excel spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, interfaces and requirement links in MATLAB tables. The
components table must include name, unique ID, and parent component ID for each component. The
spreadsheet can also include other relevant information required to construct the architecture
hierarchy for referenced model, and stereotype qualifier names. The ports table must include port
name, direction, component, and port ID information. Port interface information may also be required
to assign ports to components. The connections table includes information to connect ports. At a
minimum, this table must include the connection ID, source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) function:

• Reads stereotype names from the components table and loads the profiles
• Creates components and attaches ports
• Creates connections using the connection map
• Sets interfaces on ports
• Links elements to specified requirements (requires a Requirements Toolbox™ license)
• Saves referenced models
• Saves the architecture model

Instantiate adapter class to read from Excel.

modelName = "simpleUAVArchitecture";

ImportModelFromExcel function reads the Excel file and creates the MATLAB tables.

importAdapter = ImportModelFromExcel("SmallUAVModel.xls","Components", ...
 "Ports","Connections","PortInterfaces","RequirementLinks");
importAdapter.readTableFromExcel();

13 Import and Export Architecture Models

13-2

Import an Architecture

model = systemcomposer.importModel(modelName,importAdapter.Components, ...
 importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces, ...
 importAdapter.RequirementLinks);

Auto-arrange blocks in the generated model.

Simulink.BlockDiagram.arrangeSystem(modelName)

Export an Architecture

You can export an architecture to MATLAB tables and then convert the tables to an external file.

exportedSet = systemcomposer.exportModel(modelName);

The output of the function is a structure that contains the component table, port table, connection
table, the interface table, and the requirement links table. Save this structure to an Excel file.

SaveToExcel("ExportedUAVModel",exportedSet);

See Also
importModel | exportModel | updateLinksToReferenceRequirements

More About
• “Import and Export Architecture Models” on page 13-5
• “Compose Architectures Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-17

 Import and Export Architectures

13-3

• “Manage Requirements” on page 2-8
• “Import System Composer Architecture Using ModelBuilder” on page 13-13
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

13 Import and Export Architecture Models

13-4

Import and Export Architecture Models
To build a System Composer model, you can import information about components, ports, and
connections in a predefined format using MATLAB table objects. You can extend these tables and add
information like applied stereotypes, property values, linked model references, variant components,
interfaces, and requirement links.

Similarly, you can export information about components, hierarchy of components, ports on
components, connections between components, linked model references, variants, stereotypes on
elements, interfaces, and requirement links.

Define Basic Architecture
The minimum required structure for a System Composer model consists of these sets of information:

• Components table
• Ports table
• Connections table

To import additional elements, you need to add columns to the tables and add specific values for
these elements.

Components Table

The information about components is passed as values in a MATLAB table against predefined column
names, where:

• Name is the component name.
• ID is a user-defined ID used to map child components and add ports to components.
• ParentID is the parent component ID.

For example, Component_1_1 and Component_1_2 are children of Component_1.

Name ID ParentID
root 0
Component_1 1 0
Component_1_1 2 1
Component_1_2 3 1
Component_2 4 0

Ports Table

The information about ports is passed as values in a MATLAB table against predefined column names,
where:

• Name is the port name.
• Direction can be one of Input, Output, or Physical.
• ID is a user-defined port ID used to map ports to port connections.

 Import and Export Architecture Models

13-5

• CompID is the ID of the component to which the port is added. It is the component passed in the
components table.

Name Direction ID CompID
Port1 Output 1 1
Port2 Physical 2 4
Port1_1 Output 3 2
Port1_2 Input 4 3

Connections Table

The information about connections is passed as values in a MATLAB table against predefined column
names, where:

• Name is the connection name.
• ID is connection ID used to check that the connections are properly created during the import

process.
• Kind is the kind of connection specified by Data by default or Physical. The Kind column is

optional and will default to Data if undefined.
• SourcePortID is the ID of the source port.
• DestPortID is the ID of the destination port.
• PortIDs are a comma-separated list of port IDs for physical ports that support nondirectional

connections.

Name Kind ID SourcePortID DestPortID PortIDs
Conn1 Data 1 1 2
Conn2 Physical 2 3,4

Import Basic Architecture
Import the basic architecture from the tables created above into System Composer from the MATLAB
Command Window using the importModel function.

systemcomposer.importModel("importedModel",components,ports,connections)

The basic architecture model opens.

13 Import and Export Architecture Models

13-6

Tip The tables do not include information about the model's visual layout. You can arrange the
components manually or use Architecture > Arrange > Arrange Automatically.

Extend Basic Architecture Import
You can import other model elements into the basic structure tables.

Import Data Interfaces and Map Ports to Interfaces

To define the data interfaces, add interface names in the ports table to associate ports to
corresponding portInterfaces table. Create a table similar to components, ports, and
connections. Information like interface name, associated element name along with data type,
dimensions, units, complexity, minimum, and maximum values are passed to the importModel
function in a table format shown below.

Name ID ParentI
D

DataTyp
e

Dimension
s

Units Comple
xity

Minimu
m

Maximu
m

interface
1

1 DataInt
erface

elem1 2 1 interfa
ce2

interface
2

3 DataInt
erface

elem2 4 1 double 1 "" real "[]" "[]"

 Import and Export Architecture Models

13-7

Name ID ParentI
D

DataTyp
e

Dimension
s

Units Comple
xity

Minimu
m

Maximu
m

elem3 5 1 valueTy
pe

3 cm real 0 100

valueType 6 int32 3 cm real 0 100
interface
3

7 Physica
lInterf
ace

elec 8 7 Connect
ion:
foundat
ion.ele
ctrical
.electr
ical

mech 9 7 Connect
ion:
foundat
ion.mec
hanical
.mechan
ical.ro
tationa
l

Data interfaces interface1 and interface2 are defined with data elements elem1 and elem2
under interface1. Data element elem2 is typed by interface2, inheriting its structure. For more
information, see “Nest Interfaces to Reuse Data” on page 3-7.

Note Owned interfaces cannot be nested. You cannot define an owned interface as the data type of
data elements. For more information, see “Define Owned Interfaces Local to Ports” on page 3-10.

This data interface interface1 includes a data element elem3, which is typed by a value type
valueType and inherits its properties. For more information, see “Create Value Types as Interfaces”
on page 3-6.

This physical interface interface3 includes physical elements elec and mech, which are typed
under their respective physical domains. For more information, see “Specify Physical Interfaces on
Ports” on page 7-24.

To map the added data interface to ports, add the column InterfaceID in the ports table and
specify the data interface to be linked. For example, interface1 is mapped to Port1 as shown
below.

Name Direction ID CompID InterfaceID
Port1 Output 1 1 interface1
Port2 Input 2 4 interface2

13 Import and Export Architecture Models

13-8

Name Direction ID CompID InterfaceID
Port1_1 Output 3 2 ""
Port1_2 Input 4 3 interface1

Import Variant Components, Stateflow Behaviors, or Reference Components

You can add variant components just like any other component in the components table, except you
specify the name of the active variant. Add choices as child components to the variant components.
Specify the variant choices as string values in the VariantControl column. You can enter
expressions in the VariantCondition column. For more information, see “Create Variants” on page
1-21.

Add a variant component VarComp using component type Variant with choices Choice1 and
Choice2. Set Choice2 as the active choice.

To add a referenced Simulink model, change the component type to Behavior and specify the
reference model name simulink_model.

To add a Stateflow chart behavior on a component, change the component type to
StateflowBehavior. If System Composer does not detect a license or installation of Stateflow, a
Composition component is imported instead.

Name ID ParentID Reference
ModelNam
e

Componen
tType

ActiveChoi
ce

VariantCon
trol

VariantCon
dition

root 0
Component
1

C1 0 simulink_
model

Behavior

VarComp V2 0 Variant Choice2
Choice1 C6 V2 petrol
Choice2 C7 V2 diesel
Component
3

C3 0 Stateflow
Behavior

Component
1_1

C4 C1

Component
1_2

C5 C1

Pass the modified components table along with the ports and connections tables to the
importModel function.

Apply Stereotypes and Set Property Values on Imported Model

To apply stereotypes on components, ports, and connections, add a StereotypeNames column to the
components table. To set the properties for the stereotypes, add a column with a name defined using
the profile name, stereotype name, and property name. For example, name the column
UAVComponent_OnboardElement_Mass for a UAVComponent profile, a OnBoardElement
stereotype, and a Mass property.

 Import and Export Architecture Models

13-9

You set the property values in the format value{units}. Units and values are populated from the
default values defined in the loaded profile file. For more information, see “Define Profiles and
Stereotypes” on page 5-2.

Name ID ParentID StereotypeNam
es

UAVComponent
_OnboardEleme
nt_Mass

UAVCompon
ent_Onboard
Element_Po
wer

root 0
Component_1 1 0 UAVComponent.O

nboardElement
0.93{kg} 0.65{mW}

Component_1_1 2 1
Component_1_2 3 1 UAVComponent.O

nboardElement
0.93{kg} ""

Component_2 4 0

Assign Requirement Links on Imported Model

To assign requirement links to the model, add a requirementLinks table with these required
columns:

• Label is the name of the requirement.
• ID is the ID of the requirement.
• SourceID is the architectural element to which the requirement is attached.
• DestinationType is how requirements are saved.
• DestinationID is where the requirement is located.
• Type is the requirement type.

For more information, see “Manage Requirements” on page 2-8.

Label ID SourceID DestinationT
ype

DestinationID Type

rset#1 1 components
:1

linktype_r
mi_slreq

C:\Temp
\rset.slreqx#1

Implement

rset#2 2 components
:0

linktype_r
mi_slreq

C:\Temp
\rset.slreqx#2

Implement

rset#3 3 ports:1 linktype_r
mi_slreq

C:\Temp
\rset.slreqx#3

Implement

rset#4 4 ports:3 linktype_r
mi_slreq

C:\Temp
\rset.slreqx#4

Implement

A Requirements Toolbox license is required to import requirement links into a System Composer
architecture model.

Specify Elements on Architecture Port

In the connections table, you can specify different kinds of signal interface elements as source
elements or destination elements. Connections can be formed from a root architecture port to a

13 Import and Export Architecture Models

13-10

component port, from a component port to a root architecture port, or between two root architecture
ports of the same architecture.

The nested interface element mobile.elem is the source element for the connection between an
architecture port and a component port. The nested element mobile.alt is the destination element
for the connection between an architecture port and a component port. The interface element
mobile and the nested element mobile.alt are source elements for the connection between two
architecture ports of the same architecture.

For more information, see “Specify Source Element or Destination Element for Ports” on page 3-13.

Name ID SourcePortI
D

DestPortID SourceElement DestinationElem
ent

RootToComp1 1 5 4 mobile.elem
RootToComp2 2 5 1 mobile.alt
Comp1ToRoot 3 2 6 interface
Comp2ToRoot 4 3 6 mobile.alt
RootToRoot 5 5 6 mobile,mobile.

alt

Define Architecture Domain for Software Architectures

To specify that the architecture to be imported is a software architecture, specify the domain field of
the import structure as "Software". For more information, see “Import and Export Software
Architectures” on page 10-5.

Export Architecture
To export a model, pass the model name as an argument to the exportModel function. The function
returns a structure containing five tables: components, ports, connections, portInterfaces,

 Import and Export Architecture Models

13-11

and requirementLinks, and the field domain that is a character vector that represents the type of
architecture being exported. The value of domain is 'System' for architecture models or
'Software' for software architecture models.

exportedSet = systemcomposer.exportModel(modelName)

You can export the set to MATLAB tables and then convert those tables to external file formats,
including Microsoft® Excel® or databases.

If requirements were imported to the model using an external file, in order to export and reimport
those requirements, update reference requirement links within the model. You can use the
systemcomposer.updateLinksToReferenceRequirements function for the requirement links to
point to the imported referenced requirements instead of the external documents.

See Also
importModel | exportModel | systemcomposer.io.ModelBuilder |
systemcomposer.updateLinksToReferenceRequirements

More About
• “Compose Architectures Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-17
• “Implement Component Behavior Using Simulink” on page 7-2
• “Manage Requirements” on page 2-8
• “Import and Export Architectures” on page 13-2
• “Import System Composer Architecture Using ModelBuilder” on page 13-13

13 Import and Export Architecture Models

13-12

Import System Composer Architecture Using ModelBuilder

Import architecture specifications into System Composer™ using the
systemcomposer.io.ModelBuilder utility class. These architecture specifications can be defined
in an external source, such as an Excel® file.

In System Composer, an architecture is fully defined by four sets of information:

• Components and their position in the architecture hierarchy.
• Ports and their mapping to components.
• Connections among components through ports. In this example, we also import interface data
definitions from an external source.

• Interfaces in architecture models and their mapping to ports.

This example uses the systemcomposer.io.ModelBuilder class to pass all of the above
architecture information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

External Source Files

• Architecture.xlsx — This Excel file contains hierarchical information of the architecture
model. This example maps the external source data to System Composer model elements. This
information maps in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx — This Excel file contains interface data definitions of the model. This
example assumes this mapping between the data definitions in the Excel source file and interfaces
hierarchy in System Composer.

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the ModelBuilder Class

You can instantiate the ModelBuilder class with a profile name.

 Import System Composer Architecture Using ModelBuilder

13-13

[stat,fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end

Specify the name of the model to build.

modelName = 'scExampleModelBuilder';

Specify the name of the profile.

profile = 'UAVComponent';

Specify the name of the source file to read architecture information.

architectureFileName = 'Architecture.xlsx';

Instantiate the ModelBuilder.

builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions

Reading the information in the external source file DataDefinitions.xlsx to build the interface
data model.

Create MATLAB® tables from the Excel source file.

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2';

Force readtable to start reading from the second row.

definitionContents = readtable('DataDefinitions.xlsx',opts);

The systemcomposer.io.IdService class generates unique ID for a given key.

idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)

In the case of interfaces, add the interface name to the model builder.

 interfaceName = definitionContents.Name{rowItr};

Get the unique interface ID.

getID(container,key) generates or returns (if key is already present) same value for input key
within the container.

 interfaceID = idService.getID('interfaces',interfaceName);

Use builder.addInterface to add the interface to the data dictionary.

 builder.addInterface(interfaceName,interfaceID);
 else

13 Import and Export Architecture Models

13-14

In the case of an element, read the element properties and add the element to the parent interface.

 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);

The ElementID is unique within a interface. Append E at the start of an ID for uniformity. The
generated ID for an input element is unique within parent interface name as a container.

 elemID = idService.getID(parentInterface,elementName,'E');

Set the data type, dimensions, units, minimum, and maximum properties of the element.

 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);

Make sure that input to builder utility function is always a string.

 if ~ischar(units)
 units = '';
 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};

Use builder.addElementInInterface to add an element with properties in the interface.

 builder.addElementInInterface(elementName,elemID,interfaceID,datatype,dimensions,units,'real',maximum,minimum);
 end
end

Step 3. Build Architecture Specifications

Architecture specifications are created by MATLAB tables from the Excel source file.

excelContents = readtable(architectureFileName);

Iterate over each row in the table.

for rowItr =1:numel(excelContents(:,1))

Read each row of the Excel file and columns.

 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};

Populate the contents of the table.

 if strcmp(class,'component')
 ID = idService.getID('comp',Name);

The Root ID is by default set as zero.

 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp',Parent);
 end

Use builder.addComponent to add a component.

 Import System Composer Architecture Using ModelBuilder

13-15

 builder.addComponent(Name,ID,parentID);

Read the property values.

 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};

Use builder.setComponentProperty to set stereotype and property values.

 builder.setComponentProperty(ID,'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else

In this example, concatenation of the port name and parent component name is used as key to
generate unique IDs for ports.

 portID = idService.getID('port',strcat(Name,Parent));

For ports on root architecture, the compID is assumed as 0.

 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end

Use builder.addPort to add a port.

 builder.addPort(Name,class,portID,compID);

The InterfaceName specifies the name of the interface linked to the port.

 interfaceName = excelContents.InterfaceName{rowItr};

Get the interface ID.

getID will return the same IDs already generated while adding interface in Step 2.

 interfaceID = idService.getID('interfaces',interfaceName);

Use builder.addInterfaceToPort to map interface to port.

 builder.addInterfaceToPort(interfaceID,portID);

Read the ConnectedTo information to build connections between components.

 connectedTo = excelContents.ConnectedTo{rowItr};

ConnectedTo is in the format:

(DestinationComponentName::DestinationPortName)

For this example, consider the current port as source of the connection.

 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');

Get the port ID of the connected port.

13 Import and Export Architecture Models

13-16

In this example, port ID is generated by concatenating the port name and the parent component
name. If the port ID is already generated, the getID function returns the same ID for the input key.

 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));

Populate the connection table.

 sourcePortID = portID;
 destPortID = connectedPortID;

Use builder.addConnection to add connections.

 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end
 end
end

Step 3. Import Model from Populated Tables with builder.build Function

[model,importReport] = builder.build(modelName);

Clean up artifacts.

cleanUp

Copyright 2020 The MathWorks, Inc.

See Also
systemcomposer.io.ModelBuilder | importModel | exportModel

 Import System Composer Architecture Using ModelBuilder

13-17

More About
• “Import and Export Architecture Models” on page 13-5
• “Compose Architectures Visually” on page 1-2
• “Import and Export Architectures” on page 13-2
• “Simulate Mobile Robot with System Composer Workflow” on page 5-20

13 Import and Export Architecture Models

13-18

System Composer Report Generation for System Architectures

This example shows the different parts of a report generation script for a System Composer™
architecture model and its artifacts.

Import the relevant packages and then add the folder with the example files to the MATLAB® path.

import mlreportgen.report.*
import slreportgen.report.*
import slreportgen.finder.*
import mlreportgen.dom.*
import mlreportgen.utils.*
import systemcomposer.query.*
import systemcomposer.rptgen.finder.*

addpath(fullfile(matlabroot,'toolbox','systemcomposer','examples','rpt'))

Initialize the report.

rpt = slreportgen.report.Report(CompileModelBeforeReporting=false,output="SystemArchitectureReport");

Load the model and reference model.

systemcomposer.loadModel(fullfile(matlabroot,'toolbox','systemcomposer','examples','rpt','mTest'));
model = systemcomposer.loadModel("mTestModel");

Append the title page and the table of contents.

add(rpt,TitlePage("Title",sprintf('%s',model.Name)));
add(rpt,TableOfContents);

Introduction

Add sections and paragraphs to add textual information to the report.

Introduction = Chapter("Title", "Introduction");
sec1_1 = Section('Title', "Purpose");
p1 = Paragraph(['This document provides a comprehensive architectural ...' ...
 'overview of the system using a number of different architecture views...' ...
 ' to depict different aspects of the system. It is intended to capture...' ...
 ' and convey the significant architectural decisions which have been...' ...
 ' made for the system.']);
append(sec1_1, p1);

sec1_2 = Section("Scope");
p2 = Paragraph(['This System Architecture Description provides an architectural...' ...
 ' overview of the Mobile Robot System being designed and developed by the...' ...
 ' Acme Corporation. The document was generated directly from the Mobile...' ...
 ' Robot models implemented in MATLAB, Simulink and System Composer.']);
append(sec1_2, p2);
append(Introduction, sec1_1);
append(Introduction, sec1_2);

Architectural Elements

Create a new chapter to represent architectural elements.

 System Composer Report Generation for System Architectures

13-19

ArchitecturalElements = Chapter("Architecture Description");

Use the Simulink® slreportgen.finder.SystemDiagramFinder (Simulink Report Generator)
finder to add a snapshot of the model to the report.

systemContext = Section(model.Name);
finder = SystemDiagramFinder(model.Name);
finder.SearchDepth = 0;
results = find(finder);
append(systemContext, results);

append(ArchitecturalElements, systemContext);

Use the systemcomposer.rptgen.finder.ComponentFinder finder to report on components in
the model.

cf = ComponentFinder(model.Name);
cf.Query = AnyComponent();
comp_finder = find(cf);

for comp = comp_finder
 componentSection = Section("Title", comp.Name);

Create a list of components allocated from or to a particular component using the
systemcomposer.rptgen.finder.AllocationListFinder finder.

 d = AllocationListFinder(fullfile(matlabroot, 'toolbox', 'systemcomposer', 'examples', 'rpt', "AllocationSet.mldatx"));
 compObject = lookup(model,'UUID',comp.Object);
 d.ComponentName = getfullname(compObject.SimulinkHandle);
 result = find(d);
 append(componentSection, comp);

Append the component information to the report.

 append(systemContext,componentSection);

Append the allocation information to the report.

 append(systemContext, result);
end

Allocation Sets

Create a chapter to report on the allocation sets associated with the model.

Find all allocation sets using the systemcomposer.rptgen.finder.AllocationSetFinder
finder.

allocation_finder = AllocationSetFinder(fullfile(matlabroot, 'toolbox', 'systemcomposer', 'examples', 'rpt', "AllocationSet.mldatx"));
AllocationChapter = Chapter("Allocations");
while hasNext(allocation_finder)
 alloc = next(allocation_finder);
 allocationName = Section(alloc.Name);
 append(allocationName, alloc);
 append(AllocationChapter, allocationName);
end

13 Import and Export Architecture Models

13-20

Architecture Views

Create a chapter to display information about the architecture views in the model.

Find all the views using the systemcomposer.rptgen.finder.ViewFinder finder.

ViewChapter = Chapter("Architecture Views");
view_finder = ViewFinder(model.Name);
while(hasNext(view_finder))
 v = next(view_finder);
 viewName = Section('Title', v.Name);
 append(viewName, v);
 append(ViewChapter, viewName);
end

Dependency Graph

Create a chapter to display the dependency graph image using the
systemcomposer.rptgen.report.DependencyGraph reporter.

Packaging = Chapter("Packaging");
packaging = Section('Title', 'Packaging');
graph = systemcomposer.rptgen.report.DependencyGraph("Source", [model.Name '.slx']);
append(packaging, graph);
append(Packaging, packaging);

Requirements Analysis

Report on all the requirement sets and requirement link sets associated with the model.

ReqChapter = Chapter("Requirements Analysis");

Requirement Sets

Collect the requirement sets using the
systemcomposer.rptgen.finder.RequirementSetFinder finder.

RequirementSetSection = Section("Requirement Sets");
reqFinder1 = RequirementSetFinder(fullfile(matlabroot, 'toolbox', 'systemcomposer', 'examples', 'rpt', "TestRequirement.slreqx"));
result = find(reqFinder1);
pp = Paragraph("This requirement set describes the system requirements for the mobile robot that are derived from the stakeholder needs document.");
append(RequirementSetSection, pp);
append(RequirementSetSection, result.getReporter);

Requirement Link Sets

Collect the requirement link sets using the
systemcomposer.rptgen.finder.RequirementLinkFinder finder.

RequirementLinkSection = Section("Requirement Link Sets");
reqLinkFinder = RequirementLinkFinder(fullfile(matlabroot, 'toolbox', 'systemcomposer', 'examples', 'rpt', "TestRequirement.slmx"));
resultL = find(reqLinkFinder);
rptr = systemcomposer.rptgen.report.RequirementLink("Source", resultL);
append(RequirementLinkSection, rptr);

append(ReqChapter, RequirementSetSection);
append(ReqChapter, RequirementLinkSection);

 System Composer Report Generation for System Architectures

13-21

Interfaces

Create a chapter to report on all the interfaces in the model.

Check if any dictionaries are linked within the model using the
systemcomposer.rptgen.finder.DictionaryFinder finder.

df = DictionaryFinder(model.Name);
dictionary = find(df);

No Dictionaries present in the Model

boolHasNoDictionary = isempty(dictionary)

boolHasNoDictionary = logical
 1

Since boolHasNoDictionary is true, create a separate chapter for interfaces to report on all the
interfaces associated with the model using the
systemcomposer.rptgen.finder.InterfaceFinder finder.

if boolHasNoDictionary
 InterfaceChapter = Chapter("Interfaces Appendix");
 interfaceFinder = InterfaceFinder(model.Name);
 interfaceFinder.SearchIn = "Model";
 while hasNext(interfaceFinder)
 intf = next(interfaceFinder);
 interfaceName = Section(intf.InterfaceName);
 append(interfaceName, intf);
 append(InterfaceChapter, interfaceName);
 end
end

Profiles

Create a chapter to report on all the profiles in the model.

Find all the profiles using the systemcomposer.rptgen.finder.ProfileFinder finder.

ProfileChapter = Chapter("Profiles Appendix");
pf = ProfileFinder("TestProfile.xml");
while hasNext(pf)
 intf = next(pf);
 profileName = Section(intf.Name);
 append(profileName, intf);
 append(ProfileChapter, profileName);
end

Stereotypes

Create a section to report on all the stereotypes in the profiles in the model.

Find all the stereotypes using the systemcomposer.rptgen.finder.StereotypeFinder finder.

StereotypeSection = Section("Stereotypes");
sf = StereotypeFinder("TestProfile.xml");
while hasNext(sf)
 stf = next(sf);

13 Import and Export Architecture Models

13-22

 stereotypeName = Section(stf.Name);
 append(stereotypeName, stf);
 append(StereotypeSection, stereotypeName);
end

append(ProfileChapter, StereotypeSection);

Final Report

Add all the chapters to the report in the desired order.

append(rpt, Introduction);
append(rpt, ArchitecturalElements);
append(rpt, ViewChapter);
append(rpt, Packaging);
append(rpt, AllocationChapter);
append(rpt, ReqChapter);
append(rpt, InterfaceChapter);
append(rpt, ProfileChapter);

rptview(rpt)

See Also
importModel | exportModel

More About
• “Compose Architectures Visually” on page 1-2
• “Create Architecture Views Interactively” on page 11-5
• “Create and Manage Allocations Programmatically” on page 8-8
• “Manage Requirements” on page 2-8
• “Define Port Interfaces Between Components” on page 3-2
• “Define Profiles and Stereotypes” on page 5-2
• “Import and Export Architecture Models” on page 13-5

 System Composer Report Generation for System Architectures

13-23

	Architecture Model Editing
	Compose Architectures Visually
	Create Architecture Model
	Components
	Ports
	Connections

	Decompose and Reuse Components
	Decompose Component
	Create Reference Architecture
	Use Reference Architecture
	Remove Reference Architecture
	Create Variants
	Add Variant Choices
	Create Software Architecture from Component

	Build Architecture Models Programmatically
	Modeling System Architecture of Small UAV
	Model-Based Systems Engineering for Space-Based Applications
	Use Property Inspector in System Composer
	Property Inspector Modes

	Requirements
	Link and Trace Requirements
	Manage Requirements
	Mobile Robot Architecture Model
	Manage Requirements
	Trace Requirements
	Use Requirements Traceability Diagram
	Link Requirements
	Verify and Validate Requirements Using Test Harnesses

	Update Reference Requirement Links from Imported File

	Interface Management
	Define Port Interfaces Between Components
	Create Interfaces
	Mobile Robot Architecture Model
	Open Interface Editor
	Create Composite Data Interfaces
	Create Value Types as Interfaces
	Nest Interfaces to Reuse Data

	Assign Interfaces to Ports
	Mobile Robot Architecture Model with Interfaces
	Associate Ports with Interfaces in Property Inspector
	Assign Interfaces to Ports Using the Context Menu
	Define Owned Interfaces Local to Ports
	Select Multiple Ports and Assign Data Interface
	Specify Source Element or Destination Element for Ports
	Enable Interface Compatibility Edit-Time Check

	Interface Adapter
	Manage Interfaces with Data Dictionaries
	Mobile Robot Architecture Model with Interfaces
	Save, Link, and Delete Interfaces

	Reference Data Dictionaries
	Add Referenced Data Dictionaries
	Use Referenced Data Dictionaries for Projects with Multiple Models

	Define Parameters
	Author Parameters in System Composer Using Parameter Editor
	Use Parameters to Store Instance Values with Components

	Define Architectural Properties
	Define Profiles and Stereotypes
	Create a Profile and Add Stereotypes
	Add Properties with Stereotypes
	Define Default Stereotypes
	Use Stereotype-Based Styling

	Use Stereotypes and Profiles
	Import Profiles
	Apply Stereotypes
	Remove Stereotypes
	Extend Stereotypes

	Simulate Mobile Robot with System Composer Workflow
	Organize and Link Requirements
	Link Stakeholder Requirements to System Requirements

	Design Architecture Models
	Design, Specify, and Allocate Architecture Models

	Define Stereotypes and Perform Analysis
	Define Stereotypes and Perform Analysis

	Simulate Architectural Behavior
	Simulate Architectural Behavior

	Describe System Behavior with Diagrams
	Describe System Behavior Using Sequence Diagrams
	Author Sequence Diagram for Traffic Light Example
	Traffic Light Example
	Add Lifelines and Messages
	Add Fragments and Operands

	Use Sequence Diagrams with Architecture Models
	Traffic Light Example with Hierarchy for Sequence Diagrams
	Create Sequence Diagram
	Add Child Lifelines to Sequence Diagram
	Create Sequence Diagram Gates
	Co-Create Components
	Synchronize Sequence Diagram and Model
	Create Messages in Sequence Diagram
	Modify Sequence Diagram Using Model Browser
	Use Annotations to Describe Elements of Sequence Diagram
	Create Sequence Diagram from View

	Author Sequence Diagram Fragments
	Sequence Diagram Fragments
	Fragment Semantics
	Messages with Ambiguous Order

	Synchronize Sequence Diagrams and Architecture Models
	Simulate Sequence Diagrams for Traffic Light Example

	Use Simulink Models with System Composer
	Implement Component Behavior Using Simulink
	Create Simulink Behavior with Robot Arm Model
	Create Referenced Simulink Behavior Model
	Create Simulink Subsystem Behavior Using Subsystem Component
	Link to Existing Simulink Behavior Model
	Access Model Arguments as Parameters on Reference Components
	Create Simulink Behavior from Template for Component

	Extract Architecture of Simulink Model Using System Composer
	Implement Component Behavior Using Stateflow Charts
	Add State Chart Behavior to Component
	Remove Stateflow Chart Behavior from Component

	Extract Architecture from Simulink Model
	Implement Component Behavior Using Simscape
	Architecture Model with Simscape Behavior for a DC Motor
	Define Physical Ports on Component
	Specify Physical Interfaces on Ports
	Create Simulink Subsystem Component
	Describe Component Behavior Using Simscape

	Merge Message Lines for Architectures Using Adapter Block

	Allocate Architecture Models
	Create and Manage Allocations Interactively
	Create and Manage Allocations Interactively Using Tire Pressure Monitoring System

	Create and Manage Allocations Programmatically
	Create and Manage Allocations Using Tire Pressure Monitoring System

	Allocate Architectures in Tire Pressure Monitoring System
	Systems Engineering Approach for SoC Applications

	Analyze Architecture Model
	Analyze Architecture
	Set Properties for Analysis
	Create a Model Instance for Analysis
	Write Analysis Function
	Run Analysis Function

	Analysis Function Constructs
	Roll-Up Analysis for Quadcopter Design
	Class-Based Analysis for Battery Sizing
	Allocation-Based Analysis for Tire Pressure Monitoring
	Remaining Useful Life Analysis for Mobile Robot Design
	Variant Analysis for Insulin Infusion Pump Design

	Battery Sizing and Automotive Electrical System Analysis
	Calculate Endurance Using Quadcopter Architectural Design
	Design Insulin Infusion Pump Using Model-Based Systems Engineering

	Software Architectures
	Author Software Architectures
	Create New Software Architecture Model
	Build a Simple Software Architecture Model
	Import and Export Software Architectures
	Create Software Architecture from Architecture Model Component

	Simulate and Deploy Software Architectures
	Modeling Software Architecture of Throttle Position Control System
	Class Diagram View of Software Architectures
	Software Architecture with Class Diagram View
	Interact with Class Diagram View
	Client-Server Interfaces in Class Diagram View

	Author and Extend Functions for Software Architectures
	Author and Visualize Functions Using Functions Editor
	Author Functions Programmatically
	Implement Behaviors for Functions in the Architecture Level
	Apply Stereotypes to Functions of Software Architectures
	Import and Export Functions of Software Architectures

	Merge Message Lines Using Adapter Block
	Authoring Functions for Software Components of an Adaptive Cruise Control
	Author Service Interfaces for Client-Server Communication
	Synchronous Client-Server Simulink Behavior
	Asynchronous Client-Server Simulink Behavior

	Service-Oriented Sensor Modeling
	Simulate Asynchronous Services for Vehicle Headlight Management

	Create Custom Views
	Create Spotlight Views
	Mobile Robot Architecture Model with Properties
	Create Spotlight Views from Components

	Create Architecture Views Interactively
	Create Filtered Views with Component Filters and Port Filters
	Add Group By Criteria to Filtered Views
	Edit Views Interactively
	Add or Remove Requirements Links from Views
	Add Custom Clauses to Component Filters and Port Filters

	Create Architectural Views Programmatically
	Create Architecture Views in System Composer with Keyless Entry System
	Find Elements in Model Using Queries

	Display Component Hierarchy and Architecture Hierarchy Using Views
	Robot Computer Systems Architecture
	Switch Between Component Diagram View and Hierarchy Views

	Modeling System Architecture of Keyless Entry System

	Manage Architecture Models
	Organize System Composer Files in Projects
	Use Projects to Organize Files and Folders

	Compare Model Differences Using System Composer Comparison Tool

	Import and Export Architecture Models
	Import and Export Architectures
	Import and Export Architecture Models
	Define Basic Architecture
	Import Basic Architecture
	Extend Basic Architecture Import
	Export Architecture

	Import System Composer Architecture Using ModelBuilder
	System Composer Report Generation for System Architectures

